122k views
3 votes
Determine whether the improper integral converges or diverges, and find the value of each that converges.

∫^[infinity]_2 1/x (ln x)^2 dx

1 Answer

4 votes

Answer:

It diverges.

Explanation:

We are given the inetegral:
\int\limits^(\infty)_2 (1)/(x) (\ln x)^2 dx


\int\limits^(\infty)_2 (1)/(x) (\ln x)^2 dx=\int\limits^(\infty)_2 (\ln x)^2 d(\ln x)=\\\\=\lim_(t \to \infty) \int\limits^t_2 (\ln x)^2d(\ln x)=\lim_(t \to \infty) ((\ln t)^3)/(3) |^t_2=\infty-((\ln 2)^3)/(3) =\infty

So it is divergent.

User Sebasira
by
8.1k points
Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories