230k views
4 votes
Determine whether the improper integral converges or diverges, and find the value of each that converges.

∫^[infinity]_0 dx/(4x+1)^3

1 Answer

3 votes

Answer:

It converges to 1/8.

Explanation:

We are given the integral:
\int\limits^\infty_0 (dx)/((4x+1)^3)


\int\limits^\infty_0 (dx)/((4x+1)^3)= \lim_(t \to \infty) \int\limits^t_0 (dx)/((4x+1)^3)=\lim_(t \to \infty)  (-1)/(8(4x+1)^2)|^t_0 = 0-(-(1)/(8))=(1)/(8)

So it is convergent and converges to 1/8.

User David Marble
by
3.5k points