231k views
5 votes
For any 2×2 matirices A and B show that (A+B)T=AT+BT

User Kartik
by
5.4k points

1 Answer

3 votes

Answer:

Let matrix
A = \left[\begin{array}{ccc}1&2\\3&4\\\end{array}\right]

Let matrix
B = \left[\begin{array}{ccc}5&6\\7&8\\\end{array}\right]

Matrix
A^(T) = \left[\begin{array}{ccc}1&3\\2&4\\\end{array}\right]

Matrix
B^(T) = \left[\begin{array}{ccc}5&7\\6&8\\\end{array}\right]

1. Solving for
(A + B)^(T)

Firstly determine (A + B), then solve
(A + B)^(T)


A + B =\left[\begin{array}{ccc}1&2\\3&4\\\end{array}\right] + \left[\begin{array}{ccc}5&6\\7&8\\\end{array}\right]


A + B = \left[\begin{array}{ccc}1+5 &2+6 &\\3 + 7&4 + 8\\\end{array}\right]


A + B =\left[\begin{array}{ccc}6&8\\10&12\\\end{array}\right]


(A + B)^(T) = \left[\begin{array}{ccc}6&10\\8&12\\\end{array}\right] ------(1)

2. Solving for
A^(T) + B^(T)


A^(T) + B^(T) = \left[\begin{array}{ccc}1&3\\2&4\\\end{array}\right] + \left[\begin{array}{ccc}5&7\\6&8\\\end{array}\right]


A^(T) + B^(T) = \left[\begin{array}{ccc}1 + 5&3 +7\\2 + 6&4+8\\\end{array}\right]


A^(T) + B^(T) = \left[\begin{array}{ccc}6&10\\8&12\\\end{array}\right] -----(2)

Comparing (1) and (2)


(A + B)^(T) = A^(T) + B^(T)

User Marbdq
by
5.7k points
Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.