182k views
1 vote
Determine whether the improper integral converges or diverges, and find the value of each that converges.

∫^-1_-[infinity] ln |x| dx

1 Answer

3 votes

Answer:

It diverges.

Explanation:

We are given the integral:
\int\limits^(-1)_(-\infty) \ln |x| dx


\int\limits^(-1)_(-\infty) \ln |x| dx=\int\limits^(-1)_(-\infty) \ln (-x) dx=\\\\= \lim_(t \to \infty) \int\limits^(-1)_(-t) \ln (-x) dx= \lim_(t \to \infty)( x(\ln \left(-x\right)-1))|^(-1)_(-t)=1-\infty=-\infty

So it is divergent.

User Snuffy
by
8.5k points
Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories