Answer:
![x = 0.4142](https://img.qammunity.org/2021/formulas/mathematics/college/bixw0emjx68lfalc32z0j26dy4793j46o5.png)
Explanation:
The first step to solve this equation is placing everything with the logarithmic to one side of the equality, and everything without the exponential to the other side. So
![ln(x) + ln(x + 2) = 0](https://img.qammunity.org/2021/formulas/mathematics/college/9kmfm01ey3zaxw99du55avkpgettffjdqg.png)
Now we have to write the left side as one ln only.
We have that
![ln(a) + ln(b) = ln(a*b)](https://img.qammunity.org/2021/formulas/mathematics/college/4l4b07b6rs3ra6dt80dmeiofn0xiakmlr9.png)
So
![ln(x) + ln(x + 2) = 0](https://img.qammunity.org/2021/formulas/mathematics/college/9kmfm01ey3zaxw99du55avkpgettffjdqg.png)
![ln(x*(x+2)) = 0](https://img.qammunity.org/2021/formulas/mathematics/college/wb7ojuuax9kzex8wgat3obqv78rvf6zyjk.png)
![\ln{x^(2) + 2x} = 0](https://img.qammunity.org/2021/formulas/mathematics/college/tslfhnkj8atmmecf0y5z37dla0g5cts6ht.png)
We have that the exponential and the ln are inverse functions. This means that
. So we apply the exponential to both sides of the equality
![\e^{ln{x^(2) + 2x}} = e^(0)](https://img.qammunity.org/2021/formulas/mathematics/college/1e6g9d1en3n9wnbl4e88fgvzxj1g8gnnes.png)
![x^(2) + 2x = 1](https://img.qammunity.org/2021/formulas/mathematics/college/uu34apdjhojmjpcpmycdgnumv74ull4ois.png)
![x^(2) + 2x - 1 = 0](https://img.qammunity.org/2021/formulas/mathematics/college/lcpv5czw51om3w057lsdro10lq8irskawn.png)
This is a quadratic equation, with roots -2.4142 and 0.4142. There is no ln for negative numbers, so the solution to this equation is:
![x = 0.4142](https://img.qammunity.org/2021/formulas/mathematics/college/bixw0emjx68lfalc32z0j26dy4793j46o5.png)