1.2k views
5 votes
Determine whether the improper integral converges or diverges, and find the value of each that converges.

∫^[infinity]_1 1/x^^0.999 dx

User Alex Riina
by
5.2k points

1 Answer

3 votes

Answer:

Divergent.

Explanation:

We have been given an integral
\int\limits^\infty _1 {(1)/(x^(0.999)) \, dx. We are asked to determine whether the given integral diverges or converges.


\int _1^(\infty )\:\:\:(1)/(x^(0.999))\:\:\:dx


\int _1^(\infty )\:\:\:(1)/(x^(0.999))\:\:\:dx=\int _1^(\infty )\:\:\:x^(-0.999)\:\:\:dx


\int _1^(\infty )\:\:\:x^(-0.999)\:\:\:dx=(x^(-0.999+1))/(-0.999+1)


\int _1^(\infty )\:\:\:x^(-0.999)\:\:\:dx=(x^(0.001))/(0.001)


\int _1^(\infty )\:\:\:x^(-0.999)\:\:\:dx=1000x^(0.001)

Let us compute the boundaries.


1000(\infty)^(0.001)=\infty


1000(1)^(0.001)=1000

Since
\infty-1000 is not a finite number, therefore, the given integral diverges.

User Andrade
by
4.8k points