168k views
1 vote
Expanding logarithmic Expression In Exercise,Use the properties of logarithms to rewrite the expression as a sum,difference,or multipal of logarithms.See example 3.

In 3x(x + 1)/(2x + 1)^2

1 Answer

6 votes

Answer:


ln((3x))+ln((x+1))-2ln((2x+1))

Explanation:

we need to keep in mind two properties of log:


  • ln(ab)=ln(a)+ln(b)

  • \ln{(a)/(b)}=ln(a)-ln(b)

  • ln(a^b)=bln(a)


\ln{(3x(x+1))/((2x+1)^2)}


\ln{\left((3x(x+1))/((2x+1)^2)\right)}\\ln((3x(x+1)))-ln(((2x+1)^2))\\ln((3x))+ln((x+1))-ln(((2x+1)^2))


ln((3x))+ln((x+1))-2ln((2x+1))

this is the rewritten expression!

User PapaFreud
by
4.9k points