Answer:
Convergent;
.
Explanation:
We have been given an integral as
. We are asked to determine whether our given integral converges or diverges.
Let us integrate our given integral by u substitution as:
![\int _3^(\infty )\:\:(1)/(\left(u)^3)\:dx](https://img.qammunity.org/2021/formulas/mathematics/college/ol543t3lae1d3qfn3c9ua62rwa2lfn9g1s.png)
![\int _3^(\infty )\:\:u^(-3)\:dx](https://img.qammunity.org/2021/formulas/mathematics/college/jknr6vocqihhsydv2908mmkila74vzrvvt.png)
![\int _3^(\infty )\:\:u^(-3)\:dx=(u^(-3+1))/(-3+1)](https://img.qammunity.org/2021/formulas/mathematics/college/mh7vpf3sosypdbvifqdvccyngtmvyhy2i2.png)
![\int _3^(\infty )\:\:u^(-3)\:dx=(u^(-2))/(-3+1)](https://img.qammunity.org/2021/formulas/mathematics/college/5jqjxk17zts7jnu16k69siz95vje2fgg9l.png)
![((x+1)^(-2))/(-2)=-(1)/(2(x+1)^2)](https://img.qammunity.org/2021/formulas/mathematics/college/q74q2hhdc20ic6xih0i8r6ixkit5hhrh5d.png)
Now, we will compute the boundaries.
![-(1)/(2(\infty+1)^2)=-(1)/(\infty ^2)=0](https://img.qammunity.org/2021/formulas/mathematics/college/9knxrltjmxl5u08yki2no5zqb6br6bvr2t.png)
Our definite integral would be
![0-(-(1)/(32))=(1)/(32)](https://img.qammunity.org/2021/formulas/mathematics/college/walemokhaocrjaafwj7nidak4pro2tjpka.png)
Therefore, our given integral is convergent and its value is
.