96.0k views
5 votes
Find a unit vector that is orthognal to both [1,1,0] and [1,0,1]

1 Answer

6 votes

Answer:


(-(- √(3))/(3),-(√(3))/(3) , (√(3))/(3))

Explanation:

take u = [1,1,0] and

v = [1,0,1]

calculate the cross product of u and v

u × v = [1,1,0] × [1,0,1]


[\begin{vmatrix}0  & 1\\  1 &1\end{vmatrix}\begin{vmatrix}1  & 1\\ 1 & 0\end{vmatrix}\begin{vmatrix}1  & 0\\ 0 & 1 \end{vmatrix} ]

= (-1,-1,1)

then


\left \| -1,-1,1 \right \| = √( -1^2 + -1^2 +1)= √(3)


(1)/(√(3))(-1,-1,1 ) to unit vector by dividing by
√(3)


((1)/(√(3))(-1,-1,1 ))/(√(3)) = (-(- √(3))/(3),-(√(3))/(3) , (√(3))/(3))

User Gilad Green
by
5.4k points