Answer:
a)
![u v= (-3)*(4) + (9)*(-12)+ (6)*(-8)=-168](https://img.qammunity.org/2021/formulas/mathematics/college/c3g5b23m3thznqtwrltcj9m4ybectxxkgm.png)
Since the dot product is not equal to zero then the two vectors are not orthogonal.
![|u|= √((-3)^2 +(9)^2 +(6)^2)=√(126)](https://img.qammunity.org/2021/formulas/mathematics/college/h406zs8s0a7otdzl9gxtb8ftx5lne5uueq.png)
![|v| =√((4)^2 +(-12)^2 +(-8)^2)=√(224)](https://img.qammunity.org/2021/formulas/mathematics/college/qkyiap6f77fsibilsjqk98x9epzp9ah8tj.png)
![cos \theta = (uv)/(|u| |v|)](https://img.qammunity.org/2021/formulas/mathematics/college/i8n037tsst719i9mkhllhr6gsr6d4b3v2q.png)
![\theta = cos^(-1) ((uv)/(|u| |v|))](https://img.qammunity.org/2021/formulas/mathematics/college/xhoh86h5no6muyeu3f92qadntarnlxue3s.png)
If we replace we got:
![\theta = cos^(-1) ((-168)/(√(126) √(224)))=cos^(-1) (-1) = \pi](https://img.qammunity.org/2021/formulas/mathematics/college/7iizfbba25qxqwfijk5qkpb67f2p3y7ukm.png)
Since the angle between the two vectors is 180 degrees we can conclude that are parallel
b)
![u v= (1)*(2) + (-1)*(-1)+ (2)*(1)=5](https://img.qammunity.org/2021/formulas/mathematics/college/y4zydiyujiwepyd29dp8ft7mipslppadqc.png)
![|u|= √((1)^2 +(-1)^2 +(2)^2)=√(6)](https://img.qammunity.org/2021/formulas/mathematics/college/vkqx2bdc8i89be1vefqzovn3zzdqki2n8l.png)
![|v| =√((2)^2 +(-1)^2 +(1)^2)=√(6)](https://img.qammunity.org/2021/formulas/mathematics/college/4xitwkrwj4nrfxrik9singha5l7254igyo.png)
![cos \theta = (uv)/(|u| |v|)](https://img.qammunity.org/2021/formulas/mathematics/college/i8n037tsst719i9mkhllhr6gsr6d4b3v2q.png)
![\theta = cos^(-1) ((uv)/(|u| |v|))](https://img.qammunity.org/2021/formulas/mathematics/college/xhoh86h5no6muyeu3f92qadntarnlxue3s.png)
![\theta = cos^(-1) ((5)/(√(6) √(6)))=cos^(-1) ((5)/(6)) = 33.557](https://img.qammunity.org/2021/formulas/mathematics/college/zt0vy2j8ab20v55lnei53pgh3ji65t0j1q.png)
Since the angle between the two vectors is not 0 or 180 degrees we can conclude that are either.
c)
![u v= (a)*(-b) + (b)*(a)+ (c)*(0)=-ab +ba +0 = -ab+ab =0](https://img.qammunity.org/2021/formulas/mathematics/college/ye3mlkpylt84gpofju5j87419nsw79fxfb.png)
Since the dot product is equal to zero then the two vectors are orthogonal.
Explanation:
For each case first we need to calculate the dot product of the vectors, and after this if the dot product is not equal to 0 we can calculate the angle between the two vectors in order to see if there are parallel or not.
Part a
u=[-3,9,6], v=[4,-12,-8,]
The dot product on this case is:
![u v= (-3)*(4) + (9)*(-12)+ (6)*(-8)=-168](https://img.qammunity.org/2021/formulas/mathematics/college/c3g5b23m3thznqtwrltcj9m4ybectxxkgm.png)
Since the dot product is not equal to zero then the two vectors are not orthogonal.
Now we can calculate the magnitude of each vector like this:
![|u|= √((-3)^2 +(9)^2 +(6)^2)=√(126)](https://img.qammunity.org/2021/formulas/mathematics/college/h406zs8s0a7otdzl9gxtb8ftx5lne5uueq.png)
![|v| =√((4)^2 +(-12)^2 +(-8)^2)=√(224)](https://img.qammunity.org/2021/formulas/mathematics/college/qkyiap6f77fsibilsjqk98x9epzp9ah8tj.png)
And finally we can calculate the angle between the vectors like this:
![cos \theta = (uv)/(|u| |v|)](https://img.qammunity.org/2021/formulas/mathematics/college/i8n037tsst719i9mkhllhr6gsr6d4b3v2q.png)
And the angle is given by:
![\theta = cos^(-1) ((uv)/(|u| |v|))](https://img.qammunity.org/2021/formulas/mathematics/college/xhoh86h5no6muyeu3f92qadntarnlxue3s.png)
If we replace we got:
![\theta = cos^(-1) ((-168)/(√(126) √(224)))=cos^(-1) (-1) = \pi](https://img.qammunity.org/2021/formulas/mathematics/college/7iizfbba25qxqwfijk5qkpb67f2p3y7ukm.png)
Since the angle between the two vectors is 180 degrees we can conclude that are parallel
Part b
u=[1,-1,2] v=[2,-1,1]
The dot product on this case is:
![u v= (1)*(2) + (-1)*(-1)+ (2)*(1)=5](https://img.qammunity.org/2021/formulas/mathematics/college/y4zydiyujiwepyd29dp8ft7mipslppadqc.png)
Since the dot product is not equal to zero then the two vectors are not orthogonal.
Now we can calculate the magnitude of each vector like this:
![|u|= √((1)^2 +(-1)^2 +(2)^2)=√(6)](https://img.qammunity.org/2021/formulas/mathematics/college/vkqx2bdc8i89be1vefqzovn3zzdqki2n8l.png)
![|v| =√((2)^2 +(-1)^2 +(1)^2)=√(6)](https://img.qammunity.org/2021/formulas/mathematics/college/4xitwkrwj4nrfxrik9singha5l7254igyo.png)
And finally we can calculate the angle between the vectors like this:
![cos \theta = (uv)/(|u| |v|)](https://img.qammunity.org/2021/formulas/mathematics/college/i8n037tsst719i9mkhllhr6gsr6d4b3v2q.png)
And the angle is given by:
![\theta = cos^(-1) ((uv)/(|u| |v|))](https://img.qammunity.org/2021/formulas/mathematics/college/xhoh86h5no6muyeu3f92qadntarnlxue3s.png)
If we replace we got:
![\theta = cos^(-1) ((5)/(√(6) √(6)))=cos^(-1) ((5)/(6)) = 33.557](https://img.qammunity.org/2021/formulas/mathematics/college/zt0vy2j8ab20v55lnei53pgh3ji65t0j1q.png)
Since the angle between the two vectors is not 0 or 180 degrees we can conclude that are either.
Part c
u=[a,b,c] v=[-b,a,0]
The dot product on this case is:
![u v= (a)*(-b) + (b)*(a)+ (c)*(0)=-ab +ba +0 = -ab+ab =0](https://img.qammunity.org/2021/formulas/mathematics/college/ye3mlkpylt84gpofju5j87419nsw79fxfb.png)
Since the dot product is equal to zero then the two vectors are orthogonal.