118k views
2 votes
Find a.b. a=3i+2j-k, b=4i+5k

User Osayilgan
by
5.5k points

2 Answers

1 vote

Answer:

A.B=7

Explanation:

A.B=AxBx+AyBy+AzBz

=(3 x 4)+(2 x 0)+(-1 x 5)

=12-5

=7

User Trini
by
5.0k points
5 votes

Answer:
a\cdot b= 7

Explanation:

We are given


a=3\hat{i}+2\hat{j}-\hat{k}


b=4\hat{i}+5\hat{k}

They can be written as


a=3\hat{i}+2\hat{j}+(-1)\hat{k}


b=4\hat{i}+0.\hat{j}+5\hat{k}

Now , the dot product of and b is given by :-


\Rightarrow\ a\cdot b= (3\hat{i}+2\hat{j}+(-1)\hat{k})\cdot(4\hat{i}+0.\hat{j}+5\hat{k})


\Rightarrow\ a\cdot b=3\cdot 4 \cdot\hat{i}\cdot\hat{i}+2\cdot0\cdot\hat{j} \cdot\hat{j}+ (-1)\cdot 5 \cdot \hat{k}\cdot \hat{k}


\Rightarrow\ a\cdot b=12 \cdot\hat{i}^2+0-5 \cdot \hat{k}^2


\Rightarrow\ a\cdot b=12 \cdot(1)+0-5 \cdot (1)[Since
\hat{i}^2=\hat{k}^2=1]


\Rightarrow\ a\cdot b=12 -5=7

Therefore , the value of the dot product
a\cdot b= 7

User KAE
by
4.7k points