Answer:
![y=-(x)/(e^(2))+(2)/(e^(2))\\](https://img.qammunity.org/2021/formulas/mathematics/college/impb8ytp071gyho3u9dli7o0xp03oa8f55.png)
this is the equation of the tangent line to the curve from the point (1, 1/e^2)
Explanation:
![y=(x)/(e^(2x))](https://img.qammunity.org/2021/formulas/mathematics/college/hbjssjonc9432bijl7wgzz3mr3smwy9i42.png)
to find the tangent line we need to find the curve's derivative.
we'll be using the quotient formula:
, here
![u = x\quad , \quad v = e^(2x)](https://img.qammunity.org/2021/formulas/mathematics/college/s57meoe3sesd06g29pbytqfqmn9lyb2cby.png)
![(dy)/(dx)=(e^(2x)(1)-x(2e^(2x)))/((e^(2x))^2)](https://img.qammunity.org/2021/formulas/mathematics/college/i67byd67x08p7tj9ys3kch2pfhsqgkr5d6.png)
![(dy)/(dx)=(e^(2x)-2xe^(2x))/((e^(4x)))](https://img.qammunity.org/2021/formulas/mathematics/college/p1bo3uuxaf04utx1izvam0plqkrww408di.png)
![(dy)/(dx)=(\left(1-2x\right))/( e^(2 x))](https://img.qammunity.org/2021/formulas/mathematics/college/ey9zyduwzaumeeasgitfvto0j2s8kro8rl.png)
This is the equation of the slope of the curve. By finding the slope of the curve at (1, 1/e^2) we'll also be finding the slope of the tangent to the curve at (1, 1/e^2).
the x-coordinate is 1, so using x =1
![(dy)/(dx)=(\left(1-2(1)\right))/( e^(2(1)))\\(dy)/(dx)=(-1)/(e^(2))](https://img.qammunity.org/2021/formulas/mathematics/college/aoyvvwpzjsaksk68xpzf8hdtyua290gnsg.png)
this is the slope of the tangent.
now to find the equation of the line:
![(y-y_1)=m(x-x_1)](https://img.qammunity.org/2021/formulas/mathematics/middle-school/crnmklyc8uqspr7t9ac18746rgcllvzd2b.png)
here, m is the slope.
![(y-(1)/(e^(2)))=-(1)/(e^(2))(x-1)\\y=-(x)/(e^(2))+(1)/(e^(2))+(1)/(e^(2))\\](https://img.qammunity.org/2021/formulas/mathematics/college/eqlbadzoujitr4qbb3k21q8zkffzoj9146.png)
![y=-(x)/(e^(2))+(2)/(e^(2))\\](https://img.qammunity.org/2021/formulas/mathematics/college/impb8ytp071gyho3u9dli7o0xp03oa8f55.png)
this is the equation of the tangent line to the curve from the point (1, 1/e^2)