Answer:
a) $3,571.02
b) $3,572.9
c) $3,573.74
Explanation:
Data provided in the question:
p = $3000,
r = 3.5%,
t = 5 years
a) quarterly
number of periods in a year, n = 4
Interest rate per period = 3.5% ÷ 4 = 0.875%
Now,
![A = p* \left( 1 + (r)/(n) \right)^{\Large{n \cdot t}}](https://img.qammunity.org/2021/formulas/mathematics/college/fzel27iggsxet8a4mm4pz5156fmjg4h53v.png)
A = total amount
n = number of times compounded per year
on substituting the respective values, we get
A = 3000 ×
A = 3000 × [/tex]\cdot { 1.00875 } ^ { 20 }[/tex]
A = 3000 × 1.19034
A = $3,571.02
b) monthly
number of periods in a year, n = 12
Now,
A =
![p* \left( 1 + (r)/(n) \right)^{\Large{n \cdot t}}](https://img.qammunity.org/2021/formulas/mathematics/college/ns7e63id510stlzr2iu6iuepaspbp0ey5t.png)
on substituting the respective values, we get
A = 3000 ×
A = 3000 × [/tex]\cdot { 1.002917} ^ { 60 }[/tex]
A = 3000 × 1.190967
A = $3,572.9
c) continuously
A =
![pe^(r* t)](https://img.qammunity.org/2021/formulas/mathematics/college/4y240zkpgvlc2l4j6k8orpamzlmxnfq8n8.png)
on substituting the respective values, we get
A = 3,000 ×
![e^(0.035* 5)](https://img.qammunity.org/2021/formulas/mathematics/college/lr72qscfuujieudzhjf7pq37xrmbb47ct6.png)
or
A = 3,000 ×
![e^(0.175)](https://img.qammunity.org/2021/formulas/mathematics/college/y3ye48rn2rgwd9ea0l3v2hedobo79flx8t.png)
or
A = 3,000 × 1.1912
or
A = $3,573.74