51.1k views
0 votes
Differentiating Exponential functions In Exercise,find the derivative of the function. See Example 2 and 3.

f(x) = e^2x/e^2x + 1

User Jackrabbit
by
4.7k points

1 Answer

2 votes

Answer:


f'(x)=(2e^(2x))/((e^(2x)+1)^2)

Explanation:

We are given that a function


f(x)=(e^(2x))/(e^(2x)+1)

We have to find the derivative of the function

Differentiate w.r.t x


f'(x)=(2e^(2x)(e^(2x)+1)-2e^(2x)(e^(2x)))/((e^(2x)+1)^2)

By using the property


(d((u)/(v)))/(dx)=(u'v-v'u)/(v^2)


(d(e^x))/(dx)=e^x


f'(x)=(2e^(4x)+2e^(2x)-2e^(4x))/((e^(2x)+1)^2)

By using property


a^x\cdot a^y=a^(x+y)


f'(x)=(2e^(2x))/((e^(2x)+1)^2)

User EPandit
by
4.6k points