Answer:
is a relative maxima and
is a relative minima.
Explanation:
We have been given a function
. We are asked to find the relative extrema of the given function.
First of all, we will find first derivative of the given function as:
![f'(x)=(d)/(dx)((1)/(8)x^3)-(d)/(dx)(2x)](https://img.qammunity.org/2021/formulas/mathematics/college/ffq02xuxc1gmp6zngyc3rfjvmjxuxbpe92.png)
![f'(x)=3*(1)/(8)x^(3-1)-2*(x^(1-1))](https://img.qammunity.org/2021/formulas/mathematics/college/ckmrgixq889kuw40iebpe71q7hc41t18qz.png)
![f'(x)=(3)/(8)x^(2)-2*(x^0)](https://img.qammunity.org/2021/formulas/mathematics/college/l3ytb29vl7dorfq1hu1a8qvl77b51dtsby.png)
![f'(x)=(3)/(8)x^(2)-2*(1)](https://img.qammunity.org/2021/formulas/mathematics/college/nz37k08e6hqciu5bnzm3bb14v56g87lr9s.png)
![f'(x)=(3)/(8)x^(2)-2](https://img.qammunity.org/2021/formulas/mathematics/college/xedhccox2ixthwvku0y8h2tqzy19n5qoxx.png)
Now, we will find the critical points by equating derivative to 0 as:
![(3)/(8)x^(2)-2=0](https://img.qammunity.org/2021/formulas/mathematics/college/v2eu8sfuppakm3ssb73244wsyv7yhp85es.png)
![(3)/(8)x^(2)=2](https://img.qammunity.org/2021/formulas/mathematics/college/jluzau35rm73f9yk0whfwgd1dd5k79012y.png)
![(8)/(3)*(3)/(8)x^(2)=(8)/(3)*2](https://img.qammunity.org/2021/formulas/mathematics/college/ijqhwohk3wz5l3h6k3oz4ctuolelzd271o.png)
Noe, we will check on which intervals our given function is increasing or decreasing.
![f'(-4)=(3)/(8)(-4)^(2)-2](https://img.qammunity.org/2021/formulas/mathematics/college/e1m2u9zou9zgv48s9rtdzujkblm95q2kac.png)
![f'(-4)=(3)/(8)(16)-2](https://img.qammunity.org/2021/formulas/mathematics/college/l72qbtdza8jxy3n9a0fcsb0bnhge39wj8g.png)
![f'(-4)=3*2-2](https://img.qammunity.org/2021/formulas/mathematics/college/uscol9hmw75iueum35i31puq0zh16e4jiw.png)
![f'(-4)=4](https://img.qammunity.org/2021/formulas/mathematics/college/48wc0bwshd33gvxkia4xy7z6jm7a550wq1.png)
![f'(1)=(3)/(8)(1)^(2)-2](https://img.qammunity.org/2021/formulas/mathematics/college/itye2ob9ypch4gncwbedohyyk0evi17kh0.png)
![f'(1)=(3)/(8)-2](https://img.qammunity.org/2021/formulas/mathematics/college/ljclavggyvpyl0naciyfw96z6jpug4ogzv.png)
![f'(1)=-1.625](https://img.qammunity.org/2021/formulas/mathematics/college/j7ifu2vj1n3veho91b1w5suvcegitck3tz.png)
![f'(4)=(3)/(8)(4)^(2)-2](https://img.qammunity.org/2021/formulas/mathematics/college/m7puxybgptzmxqmfao1m7j342kgygbzgnr.png)
![f'(4)=(3)/(8)(16)-2](https://img.qammunity.org/2021/formulas/mathematics/college/yw6n2r4e6kdp5ucln51dkp2rxilcgv43xw.png)
![f'(4)=3*2-2](https://img.qammunity.org/2021/formulas/mathematics/college/r4mattdczcgm4v9hg6jf0dfchb8ix9659v.png)
![f'(4)=4](https://img.qammunity.org/2021/formulas/mathematics/college/m6dw35ee6oz29lrmvuee1xg2rginjj6iou.png)
We know that when
, then f is increasing and when
, then f is decreasing.
Therefore,
is a relative maxima and
is a relative minima.