Answer:
i) Cu(OH)2(aq) → Cu^2+(aq) + 2OH-(aq)
ii) 1.76 *10^-7 mol/L
iii) 2.2 *10^-20
Step-by-step explanation:
Step 1: Data given
The solubility of Cu(OH)2(s) is 1.72 * 10^–6 g/100 mL of solution at 25° C.
(i) Write the balanced chemical equation for the dissociation of Cu(OH)2(s) in aqueous solution.
Cu(OH)2(aq) → Cu^2+(aq) + 2OH-(aq)
(ii) Calculate the solubility (in mol/L) of Cu(OH)2 at 25 °C.
1.72 * 10^–6 g /0.100L = 1.72 *10^-5 g/L
1.72*10^-5 g/L / 97.56 g/mol = 1.76 *10^-7 mol/L
(iii) Calculate the value of the solubility-product constant, Ksp, for Cu(OH)2 at 25 °C.
For 1 mol Cu(OH)2 we have 1 mol Cu^2+ and 2 moles OH-
This means if there reacts X of Cu(OH)2 there will be produced X if Cu^2+ and 2X of OH-
Ksp = [Cu^2+]*[OH-]²
Ksp = 1.76 *10^-7 * 2*(1.76 *10^-7)²
Ksp = 2.18 *10^-20 ≈ 2.2*10^-20