Answer:
Explanation:
Given that demand function for a product is modeled by
![p = 10,000(1- (3)/(3+e^-0.001x) ).](https://img.qammunity.org/2021/formulas/mathematics/college/n59ts724j5hlqbkhyjsfsv34jcqhfnf018.png)
where p = price in dollars and
x= units demanded
a) When x=1000, we substitute 1000 for x
![p = 10,000(1- (3)/(3+e^-0.001*1000) ).](https://img.qammunity.org/2021/formulas/mathematics/college/dyxzh4p98zr2yvh8q5vz16pcc9new5zra9.png)
![p = 10,000(1- (3)/(3+e^-1) )=1092.318](https://img.qammunity.org/2021/formulas/mathematics/college/wrxwob83npw3c8tkbqnypv2kdr4fuv0sco.png)
i.e. price is 1092.32 dollars
b) X = 1500
![p = 10,000(1- (3)/(3+e^-0.001*1500) ).](https://img.qammunity.org/2021/formulas/mathematics/college/h0tq4cn0w3c2ahjobo8g69knlcgv2fy200.png)
![p = 10,000(1- (3)/(3+e^-1.5) )=692.28](https://img.qammunity.org/2021/formulas/mathematics/college/hkcft54psfr88bfurbs8tijy3fljr5hdyp.png)
i.e. price is 692.28 dollars
c) When x increases without bound exponent with negative power becomes 0 making price = 10000(1-3/3) =0