13.8k views
2 votes
Find the average value of the function on the given interval.
f(x)=x^2e^2x; [0,2]

1 Answer

4 votes

Answer:


f_(avg)=(1)/(8)(5e^4-1)

Explanation:

We are given that a function


f(x)=x^2e^(2x)

We have to find the average value of function on the given interval [0,2]

Average value of function on interval [a,b] is given by


(1)/(b-a)\int_(a)^(b)f(x)dx

Using the formula


f_(avg)=(1)/(2-0)\int_(0)^(2)x^2e^(2x) dx

By Parts integration formula


\int(uv)dx=u\int vdx-\int((du)/(dx)\int vdx)dx

u=
x^2 and v=
e^(2x)

Apply by parts integration


f_(avg)=(1)/(2-0)([(x^2e^(2x))/(2)]^(2)_(0)-\int_(0)^(2)(2x* (e^(2x))/(2)dx)


f_(avg)=(1)/(2)(2e^4-(\int_(0)^(2)xe^(2x))dx


f_(avg)=(1)/(2)(2e^4-0-([(xe^(2x))/(2)]^(2)-(1)/(4)[e^(2x)]^(2)_(0)))


f_(avg)=(1)/(2)(2e^4-e^4+(1)/(4)(e^4-1))=(1)/(2)(e^4+(1)/(4)e^4-(1)/(4))


f_(avg)=(1)/(8)(5e^4-1)

User Sam Saarian
by
3.7k points