68.9k views
0 votes
In Exercise, evaluate each expression.
643/4

User Katee
by
4.8k points

1 Answer

1 vote

Answer:


\\ 64^{(3)/(4)} = 16√(2)

Explanation:

We need here to remember that:


\\{(x^(a))}^(b) = x^(a * b)


\\{x^(a) * x^(b) = x^(a + b)

Then,


\\ 64^{(3)/(4)} = {(8^(2))}^{((3)/(4))} = {{(2^(3))}^(2)}^(3)/(4)


\\ 64^{(3)/(4)} = {{2^(3)}^2}^(3)/(4) = 2^(3*2*3)/(4)


\\ 64^{(3)/(4)} = 2^(2*3*3)/(4) = 2^(3*3)/(2) = 2^(9)/(2)


\\ 64^{(3)/(4)} = 2^{(9)/(2)}

Since
\\ (9)/(2) = (4)/(2) + (4)/(2) + (1)/(2)


\\ 64^{(3)/(4)} = 2^{(9)/(2)} = {2^{((4)/(2) + (4)/(2) + (1)/(2))}


\\ 64^{(3)/(4)} = 2^{(4)/(2)} * 2^{(4)/(2)} * {2}^{(1)/(2)


\\ 64^{(3)/(4)} = 2^(2) * 2^(2) * {2}^{(1)/(2)


\\ 64^{(3)/(4)} = 4 * 4 * √(2) = 16 √(2)

User Schellsan
by
5.2k points