114k views
4 votes
Use integration by parts to derive the following formula from the table of integrals.

∫x^n . ln |x|dx=x^n+1 [ln |x|/n+1]-1/(n+1)^2]+c, n≠-1.

User Samash
by
7.6k points

1 Answer

2 votes

Answer:


ln|x|((x^(n+1))/(n+1))-(x^(n+1))/((n+1)^2)+C,n\\eq -1

Explanation:

We have been given an indefinite integral
\int \:x^n\:.\:ln\:|x|dx. We are asked to integrate it.

We will use integration by pats to solve our given problem.


\int udvdx=uv-\int vdu

Let
u=ln|x| and
v'=x^n.

Now, we need to find du and v using above values.


(du)/(dx)=(1)/(x)


du=(1)/(x)dx


v'=x^n


v=(x^(n+1))/(n+1)

Substitute these values in integration by parts formula:


\int \:x^n\:.\:ln\:|x|dx=ln|x|((x^(n+1))/(n+1))-\int (x^(n+1))/(n+1)*(1)/(x)dx


\int \:x^n\:.\:ln\:|x|dx=ln|x|((x^(n+1))/(n+1))-\int (x^(n+1))/(n+1)*x^(-1)dx


\int \:x^n\:.\:ln\:|x|dx=ln|x|((x^(n+1))/(n+1))-(1)/(n+1)\int x^(n+1-1)dx


\int \:x^n\:.\:ln\:|x|dx=ln|x|((x^(n+1))/(n+1))-(1)/(n+1)\int x^(n)dx


\int \:x^n\:.\:ln\:|x|dx=ln|x|((x^(n+1))/(n+1))-(1)/(n+1)*(x^(n+1))/(n+1)+C


\int \:x^n\:.\:ln\:|x|dx=ln|x|((x^(n+1))/(n+1))-(x^(n+1))/((n+1)^2)+C,n\\eq -1

Therefore, our required integral would be
ln|x|((x^(n+1))/(n+1))-(x^(n+1))/((n+1)^2)+C,n\\eq -1.

User Campsjos
by
8.5k points