Answer:
Eigenvalues : 4 and 2
Eigenvectors : <1,1> and <-1,1>.
Explanation:
The given matrix is
![A=\begin{bmatrix}3&1\\1&3\end{bmatrix}](https://img.qammunity.org/2021/formulas/mathematics/college/j587ua1cvjcmgnpbmvb3kx8ozujcyn4bc7.png)
We need to find the eigenvectors and eigenvalues for the matrix.
![|A-\lambda I|=0](https://img.qammunity.org/2021/formulas/mathematics/college/ouvl4p0jh0rmmhiwd44tyka4h2a5k7brea.png)
λ represents the eigen values.
![\det \left(\begin{bmatrix}3&1\\1&3\end{bmatrix}-\lambda\begin{bmatrix}1&0\\ 0&1\end{bmatrix}\right)=0](https://img.qammunity.org/2021/formulas/mathematics/college/p5ks4k6fo7bq0v99gxpnweqhlx2u2la631.png)
![\lambda^2-6\lambda+8=0](https://img.qammunity.org/2021/formulas/mathematics/college/g95zkuecwik58sbdondiirvtlht9gr2wj7.png)
![\lambda=4,2](https://img.qammunity.org/2021/formulas/mathematics/college/9ihh83u0vwpovyvljkq03loas279b5m7s5.png)
For
![\lambda=4](https://img.qammunity.org/2021/formulas/mathematics/college/ekci2ag89krx03jzxf866br9rb6ha067ff.png)
![(A-\lambda I)X=0](https://img.qammunity.org/2021/formulas/mathematics/college/ztuzaxku87n2qi92ag8nftsg8f4x5c0oja.png)
![\left(\begin{bmatrix}3&1\\1&3\end{bmatrix}-4\begin{bmatrix}1&0\\ 0&1\end{bmatrix}\right)\begin{bmatrix}\text{x}\\ \text{y}\end{bmatrix}=\begin{bmatrix}0\\ 0\end{bmatrix}](https://img.qammunity.org/2021/formulas/mathematics/college/um6rhjx9qzs9i1djia5owtpye3rnc3889d.png)
![\begin{bmatrix}-1&1\\ 1&-1\end{bmatrix}\begin{bmatrix}\text{x}\\ \text{y}\end{bmatrix}=\begin{bmatrix}0\\ 0\end{bmatrix}](https://img.qammunity.org/2021/formulas/mathematics/college/j9zg736tll6hhl363hvbeok3bdnmc3dhso.png)
![R_2\rightarrow R_2-R_1](https://img.qammunity.org/2021/formulas/mathematics/college/73ocdvbabspr076rnhkqqsc9vh9a53x0dj.png)
![\begin{bmatrix}1&-1\\ 0&0\end{bmatrix}\begin{bmatrix}x\\ y\end{bmatrix}=\begin{bmatrix}0\\ 0\end{bmatrix}](https://img.qammunity.org/2021/formulas/mathematics/college/paszegoh5cy04tcmyw2io7a49hs9szwr3m.png)
![x-y=0](https://img.qammunity.org/2021/formulas/mathematics/college/pekfnauq06bu6qufezfju1pbxzzqcb1rav.png)
![x=y](https://img.qammunity.org/2021/formulas/mathematics/high-school/qrp22d8rzgmyi0aa50tbnzbr4b88i3r1bx.png)
Eigenvector
![=\begin{bmatrix}y\\ y\end{bmatrix}\space\space\:y\\e \:0](https://img.qammunity.org/2021/formulas/mathematics/college/4alojidnp8ywqdsde8jt00imu0hoi2haiz.png)
Eigenvector
![=\begin{bmatrix}1\\ 1\end{bmatrix}](https://img.qammunity.org/2021/formulas/mathematics/college/wdtdxvm4ad42w4ipp7omvmoc73yfa7gs23.png)
Similarly,
For
![\lambda=2](https://img.qammunity.org/2021/formulas/mathematics/college/ew02xvgabyfsxyxk1bk8z5uhmantfi8jfm.png)
![(\begin{bmatrix}3&1\\ 1&3\end{bmatrix}-2\begin{bmatrix}1&0\\ 0&1\end{bmatrix})\begin{bmatrix}\text{x}\\ \text{y}\end{bmatrix}=\begin{bmatrix}0\\ 0\end](https://img.qammunity.org/2021/formulas/mathematics/college/ogl4cvv6rdtjmzw52d2pb56kxkq3kmg409.png)
![\begin{bmatrix}1&1\\ 1&1\end{bmatrix}\begin{bmatrix}\text{x}\\ \text{y}\end{bmatrix}=\begin{bmatrix}0\\ 0\end{bmatrix}](https://img.qammunity.org/2021/formulas/mathematics/college/nwax22l51a9lbtfw7v1t2pm67nc8dusdb9.png)
![R_2\rightarrow R_2-R_1](https://img.qammunity.org/2021/formulas/mathematics/college/73ocdvbabspr076rnhkqqsc9vh9a53x0dj.png)
![\begin{bmatrix}1&1\\ 0&0\end{bmatrix}\begin{bmatrix}\text{x}\\ \text{y}\end{bmatrix}=\begin{bmatrix}0\\ 0\end{bmatrix}](https://img.qammunity.org/2021/formulas/mathematics/college/z2uyij57iooi3s6ogkx76l1xjrsnzl8eud.png)
![x+y=0](https://img.qammunity.org/2021/formulas/mathematics/college/x9mpds95oaamzcggzol0ealpqv5xlrisx5.png)
![x=-y](https://img.qammunity.org/2021/formulas/mathematics/college/jbhua22xkbr7rhe33o7k6djl4gq7q2sib8.png)
Eigenvector
![=\begin{bmatrix}-y\\ y\end{bmatrix}\space\space\:y\\e \:0](https://img.qammunity.org/2021/formulas/mathematics/college/1umxsez7fwcd3okzm442wxsk4x80uoifid.png)
Eigenvector
![=\begin{bmatrix}-1\\ 1\end{bmatrix}](https://img.qammunity.org/2021/formulas/mathematics/college/ibngs8ht4067tl38ow8rbdmug5l7f8i5pl.png)