199k views
3 votes
Find the eigenvectors and eigenvalues for the matrix.
A =
[3 1
1 3]

User Kobayashi
by
5.1k points

1 Answer

5 votes

Answer:

Eigenvalues : 4 and 2

Eigenvectors : <1,1> and <-1,1>.

Explanation:

The given matrix is


A=\begin{bmatrix}3&amp;1\\1&amp;3\end{bmatrix}

We need to find the eigenvectors and eigenvalues for the matrix.


|A-\lambda I|=0

λ represents the eigen values.


\det \left(\begin{bmatrix}3&amp;1\\1&amp;3\end{bmatrix}-\lambda\begin{bmatrix}1&amp;0\\ 0&amp;1\end{bmatrix}\right)=0


\lambda^2-6\lambda+8=0


\lambda=4,2

For
\lambda=4


(A-\lambda I)X=0


\left(\begin{bmatrix}3&amp;1\\1&amp;3\end{bmatrix}-4\begin{bmatrix}1&amp;0\\ 0&amp;1\end{bmatrix}\right)\begin{bmatrix}\text{x}\\ \text{y}\end{bmatrix}=\begin{bmatrix}0\\ 0\end{bmatrix}


\begin{bmatrix}-1&amp;1\\ 1&amp;-1\end{bmatrix}\begin{bmatrix}\text{x}\\ \text{y}\end{bmatrix}=\begin{bmatrix}0\\ 0\end{bmatrix}


R_2\rightarrow R_2-R_1


\begin{bmatrix}1&amp;-1\\ 0&amp;0\end{bmatrix}\begin{bmatrix}x\\ y\end{bmatrix}=\begin{bmatrix}0\\ 0\end{bmatrix}


x-y=0


x=y

Eigenvector
=\begin{bmatrix}y\\ y\end{bmatrix}\space\space\:y\\e \:0

Eigenvector
=\begin{bmatrix}1\\ 1\end{bmatrix}

Similarly,

For
\lambda=2


(\begin{bmatrix}3&amp;1\\ 1&amp;3\end{bmatrix}-2\begin{bmatrix}1&amp;0\\ 0&amp;1\end{bmatrix})\begin{bmatrix}\text{x}\\ \text{y}\end{bmatrix}=\begin{bmatrix}0\\ 0\end


\begin{bmatrix}1&amp;1\\ 1&amp;1\end{bmatrix}\begin{bmatrix}\text{x}\\ \text{y}\end{bmatrix}=\begin{bmatrix}0\\ 0\end{bmatrix}


R_2\rightarrow R_2-R_1


\begin{bmatrix}1&amp;1\\ 0&amp;0\end{bmatrix}\begin{bmatrix}\text{x}\\ \text{y}\end{bmatrix}=\begin{bmatrix}0\\ 0\end{bmatrix}


x+y=0


x=-y

Eigenvector
=\begin{bmatrix}-y\\ y\end{bmatrix}\space\space\:y\\e \:0

Eigenvector
=\begin{bmatrix}-1\\ 1\end{bmatrix}

User Jyina
by
5.2k points
Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.