137k views
0 votes
Use the table of integrals, or a computer or calculator with symbolic integration capabilities, to find the indefinite integral.

∫3/x√121-x^2 dx.

User Ze Blob
by
4.7k points

1 Answer

6 votes

Answer:


-(3)/(11)\ln(\cot t + \csc t)+C

Explanation:

We are given:
\int (3)/(x√(121-x^2)) dx

We will use integration by parts.


x = 11 \sin t\\dx = 11 \cos t \: dt


\int (3)/(x√(121-x^2)) dx=\int (3* 11 \cos t \: dt)/(11 \sin t√(121-121\sin^2 t)) =\int (3* 11 \cos t \: dt)/(11 \sin t*11\cos t)} =\\\\= (3)/(11) \int \csc t = -(3)/(11)\ln(\cot t + \csc t)+C

User Xrfang
by
4.8k points