223k views
3 votes
Use the table of integrals, or a computer or calculator with symbolic integration capabilities, to find the indefinite integral.

∫2/3x(3x-5) dx.

1 Answer

1 vote

Answer:


(2)/(3)((1)/(5)ln|3x-5|-(1)/(5)ln|x|)+C

Explanation:

We have been given a indefinite integral
\int (2)/(3x\left(3x-5\right))dx. We are asked to find the indefinite integral.

We will use partial fraction formula to solve our given problem.


(2)/(3x\left(3x-5\right))=(3)/(5(3x-5))-(1)/(5x)


\int (2)/(3x\left(3x-5\right))dx=(2)/(3)\int (1)/(x\left(3x-5\right))dx


(2)/(3)\int (1)/(x\left(3x-5\right))dx=(2)/(3)\int (3)/(5(3x-5))-(1)/(5x)dx

Using difference rule of integrals, we will get:


(2)/(3)(\int (3)/(5(3x-5))dx-\int (1)/(5x)dx)

Now, we need to use u-substitution as:

Let
u=3x-5.


(du)/(dx)=3


dx=(1)/(3)du


\int (3)/(5(3x-5))dx= (3)/(5)\int (1)/((u))*(1)/(3)du=(3)/(5)*(1)/(3)\int (1)/((u))du=(1)/(5)ln|u|=(1)/(5)ln|3x-5|


\int (1)/(5x)dx=(1)/(5)\int (1)/(x)dx=(1)/(5)ln|x|

Substitute back these values:


(2)/(3)(\int (3)/(5(3x-5))dx-\int (1)/(5x)dx)=(2)/(3)((1)/(5)ln|3x-5|-(1)/(5)ln|x|)

Let us add a constant C.


(2)/(3)((1)/(5)ln|3x-5|-(1)/(5)ln|x|)+C

Therefore, our required integral would be
(2)/(3)((1)/(5)ln|3x-5|-(1)/(5)ln|x|)+C.

User Andrea Parodi
by
4.0k points