154k views
3 votes
Use the table of integrals, or a computer or calculator with symbolic integration capabilities, to find the indefinite integral.

∫10/x^2-25 dx.

User Mctylr
by
3.1k points

1 Answer

1 vote

Answer:


\int\limits {(10)/(x^2-25) } \,dx=\ln |(x-5)/(x+5)|+C

Explanation:

We want to find the indefinite integral


\int\limits {(10)/(x^2-25) } \, dx

We can rewrite this in the form:
10\int\limits {(dx)/(x^2-5^2) } \,

This will allow us to use tables of integration.

We use formula 31 from the table of integration shown in the attachment.


\int\limits {(du)/(u^2-a^2) } \,=(1)/(2a)\ln |(u-a)/(u+a)|+C

We let
u=x,a=5,then


10*\int\limits {(dx)/(x^2-5^2) } \,=10*(1)/(2*5)\ln |(x-5)/(x+5)|+C

We simplify to get:


10*\int\limits {(dx)/(x^2-5^2) } \,=\ln |(x-5)/(x+5)|+C

Use the table of integrals, or a computer or calculator with symbolic integration-example-1
User Ttugates
by
4.2k points