60.3k views
1 vote
Use the table of integrals, or a computer or calculator with symbolic integration capabilities, to find the indefinite integral.

∫16/√x^2+16 dx

1 Answer

6 votes

Answer:


\displaystyle \int {(16)/(√(x^2 + 16))} \, dx = 16 \ln \big| √(x^2 + 16) + x \big| + C

General Formulas and Concepts:

Pre-Calculus

  • Trigonometric Identities

Calculus

Differentiation

  • Derivatives
  • Derivative Notation

Derivative Property [Multiplied Constant]:
\displaystyle (d)/(dx) [cf(x)] = c \cdot f'(x)

Integration

  • Integrals
  • [Indefinite Integrals] integration Constant C

Integration Property [Multiplied Constant]:
\displaystyle \int {cf(x)} \, dx = c \int {f(x)} \, dx

U-Substitution

  • Trigonometric Substitution

Explanation:

Step 1: Define

Identify


\displaystyle \int {(16)/(√(x^2 + 16))} \, dx

Step 2: Integrate Pt. 1

  1. [Integral] Rewrite [Integration Property - Multiplied Constant]:
    \displaystyle \int {(16)/(√(x^2 + 16))} \, dx = 16 \int {(1)/(√(x^2 + 16))} \, dx
  2. [Integrand] Rewrite:
    \displaystyle \int {(16)/(√(x^2 + 16))} \, dx = 16 \int {(1)/(√(x^2 + 4^2))} \, dx

Step 3: Integrate Pt. 2

Set variables for trigonometric substitution.

  1. Set trigonometric x:
    \displaystyle x = 4 \tan (\theta)
  2. [x] Differentiate [Trigonometric Differentiation, Multiplied Constant]:
    \displaystyle dx = 4 \sec ^2(\theta) \ d\theta

Step 4: Integrate Pt. 3

  1. [Integral] Trigonometric Substitution:
    \displaystyle \int {(16)/(√(x^2 + 16))} \, dx = 16 \int {(4 \sec ^2(\theta))/(√([4 \tan (\theta)]^2 + 4^2))} \, d\theta
  2. [Integrand] Expand:
    \displaystyle \int {(16)/(√(x^2 + 16))} \, dx = 16 \int {(4 \sec ^2(\theta))/(√(4^2 \tan ^2(\theta) + 4^2))} \, d\theta
  3. [Integrand] Factor:
    \displaystyle \int {(16)/(√(x^2 + 16))} \, dx = 16 \int {(4 \sec ^2(\theta))/(√(4^2[ \tan ^2(\theta) + 1]))} \, d\theta
  4. [Integrand] Rewrite [Trigonometric Identity]:
    \displaystyle \int {(16)/(√(x^2 + 16))} \, dx = 16 \int {(4 \sec ^2(\theta))/(√(4^2 \sec ^2(\theta)))} \, d\theta
  5. [Integrand] Simplify:
    \displaystyle \int {(16)/(√(x^2 + 16))} \, dx = 16 \int {(4 \sec ^2(\theta))/(4 \sec (\theta))} \, d\theta
  6. [Integrand] Simplify:
    \displaystyle \int {(16)/(√(x^2 + 16))} \, dx = 16 \int {\sec (\theta)} \, d\theta
  7. [Integral] Trigonometric Integration:
    \displaystyle \int {(16)/(√(x^2 + 16))} \, dx = 16 \ln \big| \sec (\theta) + \tan (\theta) \big| + C
  8. [Trig] Substitute [See Attachment]:
    \displaystyle \int {(16)/(√(x^2 + 16))} \, dx = 16 \ln \bigg| (√(x^2 + 16))/(4) + (x)/(4) \bigg| + C
  9. Simplify:
    \displaystyle \int {(16)/(√(x^2 + 16))} \, dx = 16 \ln \big| √(x^2 + 16)} + x \big| + C

Topic: AP Calculus AB/BC (Calculus I/I + II)

Unit: Integration

Use the table of integrals, or a computer or calculator with symbolic integration-example-1
User Maribelle
by
6.4k points