119k views
3 votes
Exercise is mixed —some require integration by parts, while others can be integrated by using techniques discussed in the chapter on Integration.

∫^1_0 x^3/√3+x^2 dx.

User Rakwaht
by
5.2k points

1 Answer

5 votes

Answer:


\int\limits^1_0 {(x^(3) )/(√(3+x^2) ) } \, dx \approx 0.130768

Explanation:

Use Integration by Substitution:

For the integrand
(x^(3) )/(√(3+x^2) ) , substitute:


u=x^2 \\du=2xdx

Also, remember to evaluate the new integration limits:

Lower limit:


u=0^2=0

Upper limit:


u=1^2=1

So:


=(1)/(2) \int\limits^1_0 {(u)/(√(u+3) ) } \, du

Now, do a new substitution for the integrand
(u)/(√(u+3) ) :


s=u+3\\ds=du

Again, this gives us a new lower limit and a new upper limit:

Lower limit:


s=0+3=3

Upper limit:


s=1+3=4


=(1)/(2) \int\limits^4_3 {(s-3)/(√(s) ) } \, ds

Express
(s-3)/(√(s) ) as
√(s) - (3)/(√(s) )

Now, integrate the sum term by term and factor out constants:


=(1)/(2) \int\limits^4_3 {√(s) } \, ds  - (3)/(2)  \int\limits^4_3 {(1)/(√(s) ) } \, ds

Finally, apply the fundamental theorem of calculus:


=((1)/(3) s^{(3)/(2)  } \left \{ {{4} \atop {3}} \right. ) - (3√(s) \left \{ {{4} \atop {3}} \right )=(8)/(3) -√(3) +3(√(3) -2)=2√(3) - (10)/(3) \approx0.130768

User Modern
by
5.1k points