199k views
4 votes
Exercise is mixed —some require integration by parts, while others can be integrated by using techniques discussed in the chapter on Integration.

∫^1_0 x^2 dx/2x^3+1

1 Answer

3 votes

Answer:


\displaystyle \int\limits^1_0 {(x^2)/(2x^3 + 1)} \, dx = (\ln 3)/(6)

General Formulas and Concepts:

Calculus

Differentiation

  • Derivatives
  • Derivative Notation

Derivative Property [Multiplied Constant]:
\displaystyle (d)/(dx) [cf(x)] = c \cdot f'(x)

Derivative Property [Addition/Subtraction]:
\displaystyle (d)/(dx)[f(x) + g(x)] = (d)/(dx)[f(x)] + (d)/(dx)[g(x)]

Basic Power Rule:

  1. f(x) = cxⁿ
  2. f’(x) = c·nxⁿ⁻¹

Integration

  • Integrals

Integration Rule [Reverse Power Rule]:
\displaystyle \int {x^n} \, dx = (x^(n + 1))/(n + 1) + C

Integration Rule [Fundamental Theorem of Calculus 1]:
\displaystyle \int\limits^b_a {f(x)} \, dx = F(b) - F(a)

Integration Property [Multiplied Constant]:
\displaystyle \int {cf(x)} \, dx = c \int {f(x)} \, dx

Explanation:

Step 1: Define

Identify


\displaystyle \int\limits^1_0 {(x^2)/(2x^3 + 1)} \, dx

Step 2: Integrate Pt. 1

Identify variables for u-substitution.

  1. Set u:
    \displaystyle u = 2x^3 + 1
  2. [u] Basic Power Rule [Derivative Properties]:
    \displaystyle du = 6x^2 \ dx
  3. [Limits] Swap:
    \displaystyle \left \{ {{x = 1 ,\ u = 2(1)^3 + 1 = 3} \atop {x = 0 ,\ u = 2(0)^3 + 1 = 1}} \right.

Step 3: Integrate Pt. 2

  1. [Integral] Rewrite [Integration Property - Multiplied Constant]:
    \displaystyle \int\limits^1_0 {(x^2)/(2x^3 + 1)} \, dx = (1)/(6) \int\limits^1_0 {(6x^2)/(2x^3 + 1)} \, dx
  2. [Integral] U-Substitution:
    \displaystyle \int\limits^1_0 {(x^2)/(2x^3 + 1)} \, dx = (1)/(6) \int\limits^3_1 {(1)/(u)} \, du
  3. [Integral] Logarithmic Integration:
    \displaystyle \int\limits^1_0 {(x^2)/(2x^3 + 1)} \, dx = (1)/(6) \ln \big| u \big| \bigg| \limits^3_1
  4. Evaluate [Integration Rule - Fundamental Theorem of Calculus 1]:
    \displaystyle \int\limits^1_0 {(x^2)/(2x^3 + 1)} \, dx = (\ln 3)/(6)

Topic: AP Calculus AB/BC (Calculus I/I + II)

Unit: Integration

User Dhruvisha
by
7.6k points