169k views
1 vote
Exercise is mixed —some require integration by parts, while others can be integrated by using techniques discussed in the chapter on Integration.

∫(2x-1) ln (3x) dx.

User LampShaded
by
3.6k points

1 Answer

2 votes

Answer:


\displaystyle \int {(2x - 1) \ln(3x)} \, dx = (x^2 - x) \ln(3x) - \bigg( (x^2)/(2) - x \bigg) + C

General Formulas and Concepts:

Calculus

Differentiation

  • Derivatives
  • Derivative Notation

Derivative Property [Multiplied Constant]:
\displaystyle (d)/(dx) [cf(x)] = c \cdot f'(x)

Basic Power Rule:

  1. f(x) = cxⁿ
  2. f’(x) = c·nxⁿ⁻¹

Derivative Rule [Chain Rule]:
\displaystyle (d)/(dx)[f(g(x))] =f'(g(x)) \cdot g'(x)

Integration

  • Integrals
  • [Indefinite Integrals] Integration Constant C

Integration Rule [Reverse Power Rule]:
\displaystyle \int {x^n} \, dx = (x^(n + 1))/(n + 1) + C

Integration Property [Multiplied Constant]:
\displaystyle \int {cf(x)} \, dx = c \int {f(x)} \, dx

Integration Property [Addition/Subtraction]:
\displaystyle \int {[f(x) \pm g(x)]} \, dx = \int {f(x)} \, dx \pm \int {g(x)} \, dx

Integration by Parts:
\displaystyle \int {u} \, dv = uv - \int {v} \, du

  • [IBP] LIPET: Logs, inverses, Polynomials, Exponentials, Trig

Explanation:

Step 1: Define

Identify


\displaystyle \int {(2x - 1) \ln(3x)} \, dx

Step 2: Integrate Pt. 1

Identify variables for integration by parts using LIPET.

  1. Set u:
    \displaystyle u = \ln(3x)
  2. [u] Logarithmic Differentiation [Derivative Rule - Chain Rule]:
    \displaystyle du = ((3x)')/(3x) \ dx
  3. [du] Basic Power Rule [Derivative Rule - Multiplied Constant]:
    \displaystyle du = (3)/(3x) \ dx
  4. [du] Simplify:
    \displaystyle du = (1)/(x) \ dx
  5. Set dv:
    \displaystyle dv = (2x - 1) \ dx
  6. [dv] Integration Property [Addition/Subtraction]:
    \displaystyle v = \int {2x} \, dx - \int {} \, dx
  7. [dv] Integration Property [Multiplied Constant]:
    \displaystyle v = 2 \int {x} \, dx - \int {} \, dx
  8. [dv] Integration Rule [Reverse Power Rule]:
    \displaystyle v = x^2 - x

Step 3: Integrate Pt. 2

  1. [Integral] Integration by Parts:
    \displaystyle \int {(2x - 1) \ln(3x)} \, dx = (x^2 - x) \ln(3x) - \int {(x^2 - x)/(x)} \, dx
  2. [Integrand] Simplify:
    \displaystyle \int {(2x - 1) \ln(3x)} \, dx = (x^2 - x) \ln(3x) - \int {x - 1} \, dx
  3. [Integral] Rewrite [Integration Property - Addition/Subtraction]:
    \displaystyle \int {(2x - 1) \ln(3x)} \, dx = (x^2 - x) \ln(3x) - \bigg( \int {x} \, dx - \int {} \, dx \bigg)
  4. [Integral] Integration Rule [Reverse Power Rule]:
    \displaystyle \int {(2x - 1) \ln(3x)} \, dx = (x^2 - x) \ln(3x) - \bigg( (x^2)/(2) - x \bigg) + C

Topic: AP Calculus AB/BC (Calculus I/I + II)

Unit: Integration

User Rick The Scapegoat
by
3.4k points