Answer:
![\displaystyle \int {x^3e^(x^4)} \, dx = (e^(x^4))/(4) + C](https://img.qammunity.org/2021/formulas/mathematics/college/zzeruyih6gbvt1q1m6gk69lot43pcy3ugx.png)
General Formulas and Concepts:
Calculus
Differentiation
- Derivatives
- Derivative Notation
Basic Power Rule:
- f(x) = cxⁿ
- f’(x) = c·nxⁿ⁻¹
Integration
- Integrals
- [Indefinite Integrals] Integration Constant C
Integration Property [Multiplied Constant]:
![\displaystyle \int {cf(x)} \, dx = c \int {f(x)} \, dx](https://img.qammunity.org/2021/formulas/mathematics/college/kyhrzhajthfkoabkn5u9i412baa68ie7zm.png)
U-Substitution
Explanation:
Step 1: Define
Identify
![\displaystyle \int {x^3e^(x^4)} \, dx](https://img.qammunity.org/2021/formulas/mathematics/college/o59dss5kfudmcgwqpjqziqsy09dts9qyua.png)
Step 2: Integrate Pt. 1
Identify variables for u-substitution.
- Set u:
![\displaystyle u = x^4](https://img.qammunity.org/2021/formulas/mathematics/college/l9f6cisl2ycj545emyk0smppenv62zt25s.png)
- [u] Basic Power Rule:
![\displaystyle du = 4x^3 \ dx](https://img.qammunity.org/2021/formulas/mathematics/college/p7f276nhqtu03w7d49zrrvbtovg0lmw55l.png)
Step 3: Integrate Pt. 2
- [Integral] Rewrite [Integration Property - Multiplied Constant]:
![\displaystyle \int {x^3e^(x^4)} \, dx = (1)/(4) \int {4x^3e^(x^4)} \, dx](https://img.qammunity.org/2021/formulas/mathematics/college/u1vflugkj1heh9zi03llbjfkn4q8jmftec.png)
- [Integral] U-Substitution:
![\displaystyle \int {x^3e^(x^4)} \, dx = (1)/(4) \int {e^(u)} \, dx](https://img.qammunity.org/2021/formulas/mathematics/college/apbgcafp2b6tego8c6iu3hueds5xrtwyup.png)
- [Integral] Exponential Integration:
![\displaystyle \int {x^3e^(x^4)} \, dx = (e^(u))/(4) + C](https://img.qammunity.org/2021/formulas/mathematics/college/5g3jd8uu7mx7gt96zje34h8b5zl9ir4ifr.png)
- [u] Back-Substitute:
![\displaystyle \int {x^3e^(x^4)} \, dx = (e^(x^4))/(4) + C](https://img.qammunity.org/2021/formulas/mathematics/college/zzeruyih6gbvt1q1m6gk69lot43pcy3ugx.png)
Topic: AP Calculus AB/BC (Calculus I/I + II)
Unit: Integration