Answer:
![\displaystyle \int {x^2√(x + 4)} \, dx = \frac{2(x + 4)^\Big{(3)/(2)}(15x^2 - 48x + 128)}{105} + C](https://img.qammunity.org/2021/formulas/mathematics/college/zffbjpgac0ew3h8m4xqv9p8brwl2nfcfg2.png)
General Formulas and Concepts:
Calculus
Differentiation
- Derivatives
- Derivative Notation
Basic Power Rule:
- f(x) = cxⁿ
- f’(x) = c·nxⁿ⁻¹
Integration
- Integrals
- [Indefinite Integrals] Integration Constant C
Integration Rule [Reverse Power Rule]:
![\displaystyle \int {x^n} \, dx = (x^(n + 1))/(n + 1) + C](https://img.qammunity.org/2021/formulas/mathematics/college/finpzh9immxz5i8n5r71nxs30z9vx92wau.png)
Integration Property [Multiplied Constant]:
![\displaystyle \int {cf(x)} \, dx = c \int {f(x)} \, dx](https://img.qammunity.org/2021/formulas/mathematics/college/kyhrzhajthfkoabkn5u9i412baa68ie7zm.png)
Integration Property [Addition/Subtraction]:
![\displaystyle \int {[f(x) \pm g(x)]} \, dx = \int {f(x)} \, dx \pm \int {g(x)} \, dx](https://img.qammunity.org/2021/formulas/mathematics/college/ytcjdhza3nvop8ti8icbfc977nz2k5ug6b.png)
U-Substitution
Explanation:
Step 1: Define
Identify
![\displaystyle \int {x^2√(x + 4)} \, dx](https://img.qammunity.org/2021/formulas/mathematics/college/onq1yxg0k42gkkwmx9dmv92q9wl3flr4a1.png)
Step 2: Integrate Pt. 1
Identify variables for u-solve.
- Set u:
![\displaystyle u = x + 4](https://img.qammunity.org/2021/formulas/mathematics/college/oqxozyte2wd8hpgjynl5kknyacmoxrqqvp.png)
- [u] Rewrite:
![\displaystyle x = u - 4](https://img.qammunity.org/2021/formulas/mathematics/college/gckswh94crj3kaezs6927lizzx6gyovyvp.png)
- [u] Manipulate:
![\displaystyle x^2 = (u - 4)^2](https://img.qammunity.org/2021/formulas/mathematics/college/8ttzkkshxl1fs7jji7ddiv8vcn6ct1hwaj.png)
- [u] Basic Power Rule:
![\displaystyle du = dx](https://img.qammunity.org/2021/formulas/mathematics/college/gmxgfw80hw9mgrchypwdjrxlflzdlw94ze.png)
Step 3: Integrate Pt. 2
- [Integral] U-Solve:
![\displaystyle \int {x^2√(x + 4)} \, dx = \int {(u - 4)^2√(u)} \, dx](https://img.qammunity.org/2021/formulas/mathematics/college/i56gkux8i5edw85jj97m94lpsunwafoc4r.png)
- [Integrand] Rewrite:
![\displaystyle \int {x^2√(x + 4)} \, dx = \int {u^\Big{(5)/(2)} - 8u^\Big{(3)/(2)} + 16u^\Big{(1)/(2)}} \, dx](https://img.qammunity.org/2021/formulas/mathematics/college/kzahr0qu4i8sy44ua9njtznn9c65ctqtie.png)
- [Integral] Rewrite [Integration Property - Addition/Subtraction]:
![\displaystyle \int {x^2√(x + 4)} \, dx = \int {u^\Big{(5)/(2)}} \, dx - \int {8u^\Big{(3)/(2)}} \, dx + \int {16u^\Big{(1)/(2)}} \, dx](https://img.qammunity.org/2021/formulas/mathematics/college/65ljkdjehgz3cy55f2x08dxwbk9cf97qus.png)
- [Integrals] Rewrite [Integration Property - Multiplied Constant]:
![\displaystyle \int {x^2√(x + 4)} \, dx = \int {u^\Big{(5)/(2)}} \, dx - 8 \int {u^\Big{(3)/(2)}} \, dx + 16 \int {u^\Big{(1)/(2)}} \, dx](https://img.qammunity.org/2021/formulas/mathematics/college/yhs48giuz3kubkd0sm6ig4hu8v048zockb.png)
- [Integrals] Integration Rule [Reverse Power Rule]:
![\displaystyle \int {x^2√(x + 4)} \, dx = \frac{2u^\Big{(7)/(2)}}{7} - 8 \Bigg( \frac{2u^\Big{(5)/(2)}}{5} \Bigg) + 16 \Bigg( \frac{2u^\Big{(3)/(2)}}{3} \Bigg) + C](https://img.qammunity.org/2021/formulas/mathematics/college/k2jma1bt2uyrypcsq3fridpi0hm5vg7wos.png)
- Simplify:
![\displaystyle \int {x^2√(x + 4)} \, dx = \frac{2u^\Big{(7)/(2)}}{7} - \frac{16u^\Big{(5)/(2)}}{5} + \frac{32u^\Big{(3)/(2)}}{3} + C](https://img.qammunity.org/2021/formulas/mathematics/college/ta692c4diyjsqappdalvtmhnt2dopsch0a.png)
- [u] Back-Substitute:
![\displaystyle \int {x^2√(x + 4)} \, dx = \frac{2(x + 4)^\Big{(7)/(2)}}{7} - \frac{16(x + 4)^\Big{(5)/(2)}}{5} + \frac{32(x + 4)^\Big{(3)/(2)}}{3} + C](https://img.qammunity.org/2021/formulas/mathematics/college/l7rt3xt95m8ablmh7faq2vkltb00ewxxhv.png)
- Rewrite:
![\displaystyle \int {x^2√(x + 4)} \, dx = \frac{2(x + 4)^\Big{(3)/(2)}(15x^2 - 48x + 128)}{105} + C](https://img.qammunity.org/2021/formulas/mathematics/college/zffbjpgac0ew3h8m4xqv9p8brwl2nfcfg2.png)
Topic: AP Calculus AB/BC (Calculus I/I + II)
Unit: Integration