152k views
5 votes
Exercise is mixed —some require integration by parts, while others can be integrated by using techniques discussed in the chapter on Integration.

∫x^2/2x^3+1 dx.

1 Answer

5 votes

Answer:


\displaystyle \int {(x^2)/(2x^3 + 1)} \, dx = (\ln \big| 2x^3 + 1 \big|)/(6) + C

General Formulas and Concepts:

Calculus

Differentiation

  • Derivatives
  • Derivative Notation

Derivative Property [Multiplied Constant]:
\displaystyle (d)/(dx) [cf(x)] = c \cdot f'(x)

Derivative Property [Addition/Subtraction]:
\displaystyle (d)/(dx)[f(x) + g(x)] = (d)/(dx)[f(x)] + (d)/(dx)[g(x)]

Basic Power Rule:

  1. f(x) = cxⁿ
  2. f’(x) = c·nxⁿ⁻¹

Integration

  • Integrals
  • [Indefinite Integrals\ Integration Constant C

Integration Property [Multiplied Constant]:
\displaystyle \int {cf(x)} \, dx = c \int {f(x)} \, dx

U-Substitution

Explanation:

Step 1: Define

Identify


\displaystyle \int {(x^2)/(2x^3 + 1)} \, dx

Step 2: Integrate Pt. 1

Identify variables for u-substitution.

  1. Set u:
    \displaystyle u = 2x^3 + 1
  2. [u] Basic Power Rules [Derivative Properties]:
    \displaystyle du = 6x^2 \ dx

Step 3: Integrate Pt. 2

  1. [Integral] Rewrite [Integration Property - Multiplied Constant]:
    \displaystyle \int {(x^2)/(2x^3 + 1)} \, dx = (1)/(6) \int {(6x^2)/(2x^3 + 1)} \, dx
  2. [Integral] U-Substitution:
    \displaystyle \int {(x^2)/(2x^3 + 1)} \, dx = (1)/(6) \int {(1)/(u)} \, du
  3. [Integral] Logarithmic Integration:
    \displaystyle \int {(x^2)/(2x^3 + 1)} \, dx = (\ln \big| u \big|)/(6) + C
  4. [u] Back-Substitute:
    \displaystyle \int {(x^2)/(2x^3 + 1)} \, dx = (\ln \big| 2x^3 + 1 \big|)/(6) + C

Topic: AP Calculus AB/BC (Calculus I/I + II)

Unit: Integration

User Storo
by
5.2k points