140k views
0 votes
Exercise is mixed —some require integration by parts, while others can be integrated by using techniques discussed in the chapter on Integration.

∫x^2 e^2x dx.

1 Answer

2 votes

Answer:


\displaystyle \int {x^2e^(2x)} \, dx = (e^(2x))/(2) \bigg( x^2 - x + (1)/(2) \bigg) + C

General Formulas and Concepts:

Calculus

Differentiation

  • Derivatives
  • Derivative Notation

Derivative Property [Multiplied Constant]:
\displaystyle (d)/(dx) [cf(x)] = c \cdot f'(x)

Basic Power Rule:

  1. f(x) = cxⁿ
  2. f’(x) = c·nxⁿ⁻¹

Integration

  • Integrals
  • [Indefinite Integrals] Integration Constant C

Integration Property [Multiplied Constant]:
\displaystyle \int {cf(x)} \, dx = c \int {f(x)} \, dx

U-Substitution

Integration by Parts:
\displaystyle \int {u} \, dv = uv - \int {v} \, du

  • [IBP] LIPET: Logs, inverses, Polynomials, Exponentials, Trig

Explanation:

*Note:

You can use tabular integration instead of integrating by parts twice.

Step 1: Define

Identify


\displaystyle \int {x^2e^(2x)} \, dx

Step 2: Integrate Pt. 1

Identify variables for integration by parts using LIPET.

  1. Set u:
    \displaystyle u = x^2
  2. [u] Basic Power Rule:
    \displaystyle du = 2x \ dx
  3. Set dv:
    \displaystyle dv = e^(2x) \ dx
  4. [dv] Exponential Integration [U-Substitution]:
    \displaystyle v = (e^(2x))/(2)

Step 3: Integrate Pt. 2

  1. [Integral] Integration by Parts:
    \displaystyle \int {x^2e^(2x)} \, dx = (x^2e^(2x))/(2) - \int {xe^(2x)} \, dx

Step 4: Integrate Pt. 3

Identify variables for integration by parts using LIPET.

  1. Set u:
    \displaystyle u = x
  2. [u] Basic Power Rule:
    \displaystyle du = dx
  3. Set dv:
    \displaystyle dv = e^(2x) \ dx
  4. [dv] Exponential Integration [U-Substitution]:
    \displaystyle v = (e^(2x))/(2)

Step 5: Integrate Pt. 4

  1. [Integral] Integration by Parts:
    \displaystyle \int {x^2e^(2x)} \, dx = (x^2e^(2x))/(2) - \bigg( (xe^(2x))/(2) - \int {(e^(2x))/(2)} \, dx \bigg)
  2. [Integral] Rewrite [Integration Property - Multiplied Constant]:
    \displaystyle \int {x^2e^(2x)} \, dx = (x^2e^(2x))/(2) - \bigg( (xe^(2x))/(2) - (1)/(2) \int {e^(2x)} \, dx \bigg)

Step 6: Integrate Pt. 5

Identify variables for u-substitution.

  1. Set u:
    \displaystyle u = 2x
  2. [u] Basic Power Rule [Derivative Property - Multiplied Constant]:
    \displaystyle du = 2 \ dx

Step 7: Integrate Pt. 6

  1. [Integral] Rewrite [Integration Property - Multiplied Constant]:
    \displaystyle \int {x^2e^(2x)} \, dx = (x^2e^(2x))/(2) - \bigg( (xe^(2x))/(2) - (1)/(4) \int {2e^(2x)} \, dx \bigg)
  2. [Integral] U-Substitution:
    \displaystyle \int {x^2e^(2x)} \, dx = (x^2e^(2x))/(2) - \bigg( (xe^(2x))/(2) - (1)/(4) \int {e^(u)} \, dx \bigg)
  3. [Integral] Exponential Integration:
    \displaystyle \int {x^2e^(2x)} \, dx = (x^2e^(2x))/(2) - \bigg( (xe^(2x))/(2) - (e^(u))/(4) \bigg) + C
  4. [u] Back-Substitute:
    \displaystyle \int {x^2e^(2x)} \, dx = (x^2e^(2x))/(2) - \bigg( (xe^(2x))/(2) - (e^(2x))/(4) \bigg) + C
  5. Expand:
    \displaystyle \int {x^2e^(2x)} \, dx = (x^2e^(2x))/(2) - (xe^(2x))/(2) + (e^(2x))/(4) + C
  6. Factor:
    \displaystyle \int {x^2e^(2x)} \, dx = (e^(2x))/(2) \bigg( x^2 - x + (1)/(2) \bigg) + C

Topic: AP Calculus AB/BC (Calculus I/I + II)

Unit: Integration

User Schnatterer
by
7.6k points