Answer:
Equation of tangent will be
![y=(x)/(e)](https://img.qammunity.org/2021/formulas/mathematics/college/pqxic4rmyh4h8eosrsjwuj7v8vykti2c6m.png)
Explanation:
We have given the function
![y=x^2e^(-x)](https://img.qammunity.org/2021/formulas/mathematics/college/d0bv66u6kgwqsm4xax4f54v4xy8ykjr4ml.png)
We have to find the equation of tangent at the point
![(1,(1)/(e))](https://img.qammunity.org/2021/formulas/mathematics/college/2a0snl9nymvp9vkej2v2v9bauimdc3n8b0.png)
Equation of tangent is equal to
![(dy)/(dx)](https://img.qammunity.org/2021/formulas/mathematics/high-school/uixpzcj18ltl0o4d3t4rqypg7shavk8rb9.png)
So
![(dy)/(dx)=x^2(d)/(dx)e^(-x)+e^(-x)(d)/(dx)2x=-x^2e^(-x)+2e^(-x)](https://img.qammunity.org/2021/formulas/mathematics/college/gyzhzau78ykaeco8he5kewmypkssj85ijt.png)
Now we have given point
So putting these points in the equation of tangent
![(dy)/(dx)=-1^2e^(-1)+2e^(-1)](https://img.qammunity.org/2021/formulas/mathematics/college/v03dfoh04htd9olk6v3221bjl4y310dd11.png)
![(dy)/(dx)=(1)/(e)](https://img.qammunity.org/2021/formulas/mathematics/college/kcfnl76iz9ntep0w4j6ya7cbkcja9mho8o.png)
Now equation of tangent passing through
![(1,(1)/(e))](https://img.qammunity.org/2021/formulas/mathematics/college/2a0snl9nymvp9vkej2v2v9bauimdc3n8b0.png)
![y-(1)/(e)=(1)/(e)(x-1)](https://img.qammunity.org/2021/formulas/mathematics/college/hqz0ai7wzbw1hwo96z6dltxvtcvw8qqi5l.png)
![y=(x)/(e)-(1)/(e)+(1)/(e)=(x)/(e)](https://img.qammunity.org/2021/formulas/mathematics/college/kr58iooczojtzluuaccj1dub5wc7jmhwqx.png)