70.3k views
3 votes
Use integration by parts to find the integrals in Exercise.
∫^2_1 ln 5x dx.

User Sean Bone
by
3.3k points

2 Answers

2 votes

Answer:


\int^2_1 ln 5x dx=1.99

Explanation:

we have the integral:


\int^2_1 ln 5x dx

The formula to integrate by parts is:


\int udv=uv-\int vdu

in this case we will use
u=ln5x and
dv=dx.

so
v=x

and using logarithm derivation
d(lnw)=(dw)/(w)


du=(5)/(5x) =(1)/(x)

thus:


\int ln 5x dx=(ln5x)(x)- \int x((1)/(x))dx


\int ln 5x dx=xln5x - \int dx


\int ln 5x dx=xln5x - x

evaluating the limits:


\int^2_1 ln 5x dx=[xln5x - x]^2_1\\=[2ln(5*2)- 2]-[1ln(5*1) - 1]\\=[2ln10-2]-[ln5-1]\\=[2(2.3)-2]-[1.61-1]\\=[4.6-2]-0.61\\=2.6-0.61\\=1.99

User Jobo Fernandez
by
3.4k points
6 votes

Answer:


\displaystyle \int\limits^2_1 {\ln 5x} \, dx = \ln(20) - 1

General Formulas and Concepts:

Calculus

Differentiation

  • Derivatives
  • Derivative Notation

Derivative Property [Multiplied Constant]:
\displaystyle (d)/(dx) [cf(x)] = c \cdot f'(x)

Basic Power Rule:

  1. f(x) = cxⁿ
  2. f’(x) = c·nxⁿ⁻¹

Derivative Rule [Chain Rule]:
\displaystyle (d)/(dx)[f(g(x))] =f'(g(x)) \cdot g'(x)

Integration

  • Integrals

Integration Rule [Reverse Power Rule]:
\displaystyle \int {x^n} \, dx = (x^(n + 1))/(n + 1) + C

Integration Rule [Fundamental Theorem of Calculus 1]:
\displaystyle \int\limits^b_a {f(x)} \, dx = F(b) - F(a)

Integration Property [Multiplied Constant]:
\displaystyle \int {cf(x)} \, dx = c \int {f(x)} \, dx

Integration by Parts:
\displaystyle \int {u} \, dv = uv - \int {v} \, du

  • [IBP] LIPET: Logs, inverses, Polynomials, Exponentials, Trig

Explanation:

Step 1: Define

Identify


\displaystyle \int\limits^2_1 {\ln 5x} \, dx

Step 2: Integrate Pt. 1

Identify variables for integration by parts using LIPET.

  1. Set u:
    \displaystyle u = \ln 5x
  2. [u] Logarithmic Differentiation [Derivative Rule - Chain Rule]:
    \displaystyle du = ((5x)')/(5x) \ dx
  3. [du] Basic Power Rule [Derivative Rule - Multiplied Constant]:
    \displaystyle du = (5)/(5x) \ dx
  4. [du] Simplify:
    \displaystyle du = (1)/(x) \ dx
  5. Set dv:
    \displaystyle dv = dx
  6. [dv] Integration Rule [Reverse Power Rule]:
    \displaystyle v = x

Step 3: Integrate Pt. 2

  1. [Integral] Integration by Parts:
    \displaystyle \int\limits^2_1 {\ln 5x} \, dx = x \ln(5x) \bigg| \limits^2_1 - \int\limits^2_1 {} \, dx
  2. [Integral] Integration Rule [Reverse Power Rule]:
    \displaystyle \int\limits^2_1 {\ln 5x} \, dx = x \ln(5x) \bigg| \limits^2_1 - x \bigg| \limits^2_1
  3. Evaluate [Integration Rule - Fundamental Theorem of Calculus 1]:
    \displaystyle \int\limits^2_1 {\ln 5x} \, dx = \ln(20) - 1

Topic: AP Calculus AB/BC (Calculus I/I + II)

Unit: Integration

User Littlee
by
3.6k points