111k views
5 votes
Differentiating Exponential Functions In Exercise, find the derivative of the function.

y = 4e(x)^1/2

1 Answer

5 votes

Answer:
\frac{2e^{x^(1)/(2)}}{√(x)} .

Explanation:

Properties of derivative :


  • (d)/(dx)(e^x)=e^x

  • (d)/(dx)(x^n)=x^(n-1) (1)

  • (d)/(dx)(ax)=a
  • Let g be a differentiable function , then
    (d)/(dx)e^g=e^g(dg)/(dx) (2)

Given function :
y = 4e^{x^{(1)/(2)}}

Now , differentiate both sides of the above equation with respect to x , we get


y'=4e^{x^(1)/(2)}\frac{d(x^{(1)/(2)})}{dx} (Using(2))


\Rightarrow\ y'=4e^{x^(1)/(2)}((1)/(2)x^{((1)/(2)-1})) (Using (1))


\Rightarrow\ y'=2e^{x^(1)/(2)}x^{-(1)/(2)}


\Rightarrow\ y'=\frac{2e^{x^(1)/(2)}}{√(x)}

Hence, the derivative of the given function is
\frac{2e^{x^(1)/(2)}}{√(x)} .

User ConditionRacer
by
8.0k points