Answer:
8.733046.
Explanation:
We have been given a definite integral
. We are asked to find the value of the given integral using integration by parts.
Using sum rule of integrals, we will get:
![\int _0^3\:3dx-\int _0^3(x)/(3e^x)dx](https://img.qammunity.org/2021/formulas/mathematics/college/650kkjxg01itowjbzs0le6ku7aklhwsgh4.png)
We will use Integration by parts formula to solve our given problem.
Let
and
.
Now, we need to find du and v using these values as shown below:
![(du)/(dx)=(d)/(dx)(x)](https://img.qammunity.org/2021/formulas/mathematics/college/8wik7dtqpciqmwg9ihtrqf9264zs71q37g.png)
![(du)/(dx)=1](https://img.qammunity.org/2021/formulas/mathematics/college/970guy8ekooew830l36oe4h27m1rrtuh8s.png)
![du=1dx](https://img.qammunity.org/2021/formulas/mathematics/college/e3fiidmrgiln7quc57r3vafjvqzixp8qda.png)
![du=dx](https://img.qammunity.org/2021/formulas/mathematics/college/9uj8g7p3apdzoem7jpuvjzfmkdb14ru4pi.png)
![v'=(1)/(e^x)](https://img.qammunity.org/2021/formulas/mathematics/college/buj1awcemntr0p5kt96fi1uvsc22ln854q.png)
![v=-(1)/(e^x)](https://img.qammunity.org/2021/formulas/mathematics/college/82jtbb5zu71onj4id6l37ljyg7yvdqpkma.png)
Substituting our given values in integration by parts formula, we will get:
![(1)/(3)\int _0^3(x)/(e^x)dx=(1)/(3)(x*(-(1)/(e^x))-\int _0^3(-(1)/(e^x))dx)](https://img.qammunity.org/2021/formulas/mathematics/college/qwsdsxphkjoxy5k4r06j6b42rim3w2lfm7.png)
![(1)/(3)\int _0^3(x)/(e^x)dx=(1)/(3)(-(x)/(e^x)- ((1)/(e^x)))](https://img.qammunity.org/2021/formulas/mathematics/college/jypybr6ohah6lusnfun2xzgzicy2q17pze.png)
![\int _0^3\:3dx-\int _0^3(x)/(3e^x)dx=3x-(1)/(3)(-(x)/(e^x)- ((1)/(e^x)))](https://img.qammunity.org/2021/formulas/mathematics/college/e75th8j3r548l9uyw39ph3ns1lcmrwtonq.png)
Compute the boundaries:
![3(3)-(1)/(3)(-(3)/(e^3)- ((1)/(e^3)))=9+(4)/(3e^3)=9.06638](https://img.qammunity.org/2021/formulas/mathematics/college/ns011ti7dwk9iv20ccb0ftya7l9d4gftl0.png)
![3(0)-(1)/(3)(-(0)/(e^0)- ((1)/(e^0)))=0-(-(1)/(3))=(1)/(3)](https://img.qammunity.org/2021/formulas/mathematics/college/4q2a7v0ji7wbdjpeau3ya0m0w17xujn6pq.png)
![9.06638-(1)/(3)=8.733046](https://img.qammunity.org/2021/formulas/mathematics/college/gbvb7jrusldssrrvmw05nrj1t105ltj82v.png)
Therefore, the value of the given integral would be 8.733046.