Answer:
![\displaystyle \int {x \ln x} \, dx = (x^2)/(2) \bigg( \ln(x) - (1)/(2) \bigg) + C](https://img.qammunity.org/2021/formulas/mathematics/college/2n078irnf0y3ah06jo2tcidgt6d0j3hhnx.png)
General Formulas and Concepts:
Calculus
Differentiation
- Derivatives
- Derivative Notation
Integration
- Integrals
- [Indefinite Integrals] Integration Constant C
Integration Rule [Reverse Power Rule]:
![\displaystyle \int {x^n} \, dx = (x^(n + 1))/(n + 1) + C](https://img.qammunity.org/2021/formulas/mathematics/college/finpzh9immxz5i8n5r71nxs30z9vx92wau.png)
Integration Property [Multiplied Constant]:
![\displaystyle \int {cf(x)} \, dx = c \int {f(x)} \, dx](https://img.qammunity.org/2021/formulas/mathematics/college/kyhrzhajthfkoabkn5u9i412baa68ie7zm.png)
Integration by Parts:
![\displaystyle \int {u} \, dv = uv - \int {v} \, du](https://img.qammunity.org/2021/formulas/mathematics/college/babomk9eltny0rfoifpt2pbc8iqonzv2j3.png)
- [IBP] LIPET: Logs, inverses, Polynomials, Exponentials, Trig
Explanation:
Step 1: Define
Identify
![\displaystyle \int {x \ln x} \, dx](https://img.qammunity.org/2021/formulas/mathematics/college/29xnei8kop4r94usy522r21qmzv6riok3q.png)
Step 2: Integrate Pt. 1
Identify variables for integration by parts using LIPET.
- Set u:
![\displaystyle u = \ln x](https://img.qammunity.org/2021/formulas/mathematics/college/wmv4uwcwoke23iw6d1kpdndfrr4zd1v74q.png)
- [u] Logarithmic Differentiation:
![\displaystyle du = (1)/(x) \ dx](https://img.qammunity.org/2021/formulas/mathematics/college/zqs4alp4qdaag2hltjiete4xdrktfj96g8.png)
- Set dv:
![\displaystyle dv = x \ dx](https://img.qammunity.org/2021/formulas/mathematics/college/s84u95adrs3t5668l5tpsfasrjbcnxcjz3.png)
- [dv] Integration Rule [Reverse Power Rule]:
![\displaystyle v = (x^2)/(2)](https://img.qammunity.org/2021/formulas/mathematics/college/hohwx4lyzxowpk4qh6sejp6wwj9zb2p3d9.png)
Step 3: Integrate Pt. 2
- [Integral] Integration by Parts:
![\displaystyle \int {x \ln x} \, dx = (x^2 \ln x)/(2) - \int {(x)/(2)} \, dx](https://img.qammunity.org/2021/formulas/mathematics/college/m1kcpq5e4zzwvo3l4fpyup7qj6dbq0xi3g.png)
- [Integral] Rewrite [Integration Property - Multiplied Constant]:
![\displaystyle \int {x \ln x} \, dx = (x^2 \ln x)/(2) - (1)/(2) \int {x} \, dx](https://img.qammunity.org/2021/formulas/mathematics/college/2pvb6sxg3l333twedsrwxvk7z64bhp6l7i.png)
- [Integral] Integration Rule [Reverse Power Rule]:
![\displaystyle \int {x \ln x} \, dx = (x^2 \ln x)/(2) - (x^2)/(4) + C](https://img.qammunity.org/2021/formulas/mathematics/college/nzd509ee5o8rbp25onjk1o6p8mlvd0ovi6.png)
- Factor:
![\displaystyle \int {x \ln x} \, dx = (x^2)/(2) \bigg( \ln(x) - (1)/(2) \bigg) + C](https://img.qammunity.org/2021/formulas/mathematics/college/2n078irnf0y3ah06jo2tcidgt6d0j3hhnx.png)
Topic: AP Calculus AB/BC (Calculus I/I + II)
Unit: Integration