Answer:
![\displaystyle \int {(6x + 3)e^(-2x)} \, dx = -3e^(-2x) (x + 1) + C](https://img.qammunity.org/2021/formulas/mathematics/college/ciby45vmxhuhh295ostjmpj4zn87upups8.png)
General Formulas and Concepts:
Calculus
Differentiation
- Derivatives
- Derivative Notation
Derivative Property [Multiplied Constant]:
![\displaystyle (d)/(dx) [cf(x)] = c \cdot f'(x)](https://img.qammunity.org/2021/formulas/mathematics/college/bz16ipe6p14y3f6abzxt2zy0j41tg530u9.png)
Derivative Property [Addition/Subtraction]:
![\displaystyle (d)/(dx)[f(x) + g(x)] = (d)/(dx)[f(x)] + (d)/(dx)[g(x)]](https://img.qammunity.org/2021/formulas/mathematics/college/kqosumt4896r7x44jgtw0o7kk6g4d3irvr.png)
Basic Power Rule:
- f(x) = cxⁿ
- f’(x) = c·nxⁿ⁻¹
Integration
- Integrals
- [Indefinite Integrals] Integration Constant C
Integration Property [Multiplied Constant]:
![\displaystyle \int {cf(x)} \, dx = c \int {f(x)} \, dx](https://img.qammunity.org/2021/formulas/mathematics/college/kyhrzhajthfkoabkn5u9i412baa68ie7zm.png)
U-Substitution
Integration by Parts:
![\displaystyle \int {u} \, dv = uv - \int {v} \, du](https://img.qammunity.org/2021/formulas/mathematics/college/babomk9eltny0rfoifpt2pbc8iqonzv2j3.png)
- [IBP] LIPET: Logs, inverses, Polynomials, Exponentials, Trig
Explanation:
Step 1: Define
Identify
![\displaystyle \int {(6x + 3)e^(-2x)} \, dx](https://img.qammunity.org/2021/formulas/mathematics/college/g9toryvtrn3d2cyjs8vhd40olhd2phc1et.png)
Step 2: Integrate Pt. 1
- [Integrand] Rewrite [Factor]:
![\displaystyle \int {(6x + 3)e^(-2x)} \, dx = \int {3(2x + 1)e^(-2x)} \, dx](https://img.qammunity.org/2021/formulas/mathematics/college/w4wwjp95dybee56gysf69vh20y434qsylq.png)
- [Integral] Rewrite [Integration Property - Multiplied Constant]:
![\displaystyle \int {(6x + 3)e^(-2x)} \, dx = 3 \int {(2x + 1)e^(-2x)} \, dx](https://img.qammunity.org/2021/formulas/mathematics/college/ni71m9pwyv7b7opf1hc9n4g0nepbhb58vc.png)
Step 3: Integrate Pt. 2
Identify variables for integration by parts using LIPET.
- Set u:
![\displaystyle u = 2x + 1](https://img.qammunity.org/2021/formulas/mathematics/college/gkde4k1jxr0xajsyn5q9nr40ulrt2ply8q.png)
- [u] Basic Power Rule [Derivative Properties]:
![\displaystyle du = 2 \ dx](https://img.qammunity.org/2021/formulas/mathematics/college/tudmbox55j7xoe8abrcbrwtefp953y97bi.png)
- Set dv:
![\displaystyle dv = e^(-2x) \ dx](https://img.qammunity.org/2021/formulas/mathematics/college/7qa2zs2373ro6uxruyr5gcoezzqzj1454r.png)
- [dv] Exponential Integration [U-Substitution]:
![\displaystyle v = (-e^(-2x))/(2)](https://img.qammunity.org/2021/formulas/mathematics/college/5yh7pegzbmpa35dwv9918otf9m5ne7dqs0.png)
Step 4: Integrate Pt. 3
- [Integral] Integration by Parts:
![\displaystyle \int {(6x + 3)e^(-2x)} \, dx = 3 \bigg( (-(2x + 1)e^(-2x))/(2) - \int {-e^(-2x)} \, dx \bigg)](https://img.qammunity.org/2021/formulas/mathematics/college/fi0ngfv78m8gugl35u4jl0fk3yew7ss0cz.png)
- [Integral] Rewrite [Integration Property - Multiplied Constant]:
![\displaystyle \int {(6x + 3)e^(-2x)} \, dx = 3 \bigg( (-(2x + 1)e^(-2x))/(2) + \int {e^(-2x)} \, dx \bigg)](https://img.qammunity.org/2021/formulas/mathematics/college/b8zs6823r6644zq8z8kxefj98ci7gudkxo.png)
Step 5: Integrate Pt. 4
Identify variables for u-substitution.
- Set u:
![\displaystyle u = -2x](https://img.qammunity.org/2021/formulas/mathematics/college/731mnc2cvfbu0av00idxt4xb7dsc99l2iw.png)
- [u] Basic Power Rule [Derivative Property - Multiplied Constant]:
![\displaystyle du = -2 \ dx](https://img.qammunity.org/2021/formulas/mathematics/college/ldlkdyi7tzf09ijotq9klbsxgn8sagpk9e.png)
Step 6: Integrate Pt. 5
- [Integral] Rewrite [Integration Property - Multiplied Constant]:
![\displaystyle \int {(6x + 3)e^(-2x)} \, dx = 3 \bigg( (-(2x + 1)e^(-2x))/(2) - (1)/(2) \int {-2e^(-2x)} \, dx \bigg)](https://img.qammunity.org/2021/formulas/mathematics/college/h71pe9xcl51ymuej738ovjw66xfcx1ep12.png)
- [Integral] U-Substitution:
![\displaystyle \int {(6x + 3)e^(-2x)} \, dx = 3 \bigg( (-(2x + 1)e^(-2x))/(2) - (1)/(2) \int {e^(u)} \, du \bigg)](https://img.qammunity.org/2021/formulas/mathematics/college/71mmnamqlzzz136foin29sjaufksv8zg44.png)
- [Integral] Exponential Integration:
![\displaystyle \int {(6x + 3)e^(-2x)} \, dx = 3 \bigg( (-(2x + 1)e^(-2x))/(2) - (e^(u))/(2) \bigg) + C](https://img.qammunity.org/2021/formulas/mathematics/college/5ioq1yu7iqp4puwnaf8zcawpf4iy83sys9.png)
- [u] Back-Substitute:
![\displaystyle \int {(6x + 3)e^(-2x)} \, dx = 3 \bigg( (-(2x + 1)e^(-2x))/(2) - (e^(-2x))/(2) \bigg) + C](https://img.qammunity.org/2021/formulas/mathematics/college/f7tf3eeerciwrppufo9edfmuhxnveb582i.png)
- Factor:
![\displaystyle \int {(6x + 3)e^(-2x)} \, dx = -3e^(-2x) \bigg( (2x + 1)/(2) + (1)/(2) \bigg) + C](https://img.qammunity.org/2021/formulas/mathematics/college/pqzr5unl0l22qk1bctg3ig57bbxql2a9vb.png)
- Simplify:
![\displaystyle \int {(6x + 3)e^(-2x)} \, dx = -3e^(-2x) (x + 1) + C](https://img.qammunity.org/2021/formulas/mathematics/college/ciby45vmxhuhh295ostjmpj4zn87upups8.png)
Topic: AP Calculus AB/BC (Calculus I/I + II)
Unit: Integration