18.8k views
3 votes
Use integration by parts to find the integrals in Exercise.
∫(4x-12)e-8x dx.

1 Answer

3 votes

Answer:


\displaystyle \int {(4x - 12)e^(-8x)} \, dx = (e^(-8x))/(2) \bigg( (23)/(8) - x \bigg) + C

General Formulas and Concepts:

Calculus

Differentiation

  • Derivatives
  • Derivative Notation

Derivative Property [Multiplied Constant]:
\displaystyle (d)/(dx) [cf(x)] = c \cdot f'(x)

Derivative Property [Addition/Subtraction]:
\displaystyle (d)/(dx)[f(x) + g(x)] = (d)/(dx)[f(x)] + (d)/(dx)[g(x)]

Basic Power Rule:

  1. f(x) = cxⁿ
  2. f’(x) = c·nxⁿ⁻¹

Integration

  • Integrals
  • [Indefinite Integrals] Integration Constant C

Integration Property [Multiplied Constant]:
\displaystyle \int {cf(x)} \, dx = c \int {f(x)} \, dx

U-Substitution

Integration by Parts:
\displaystyle \int {u} \, dv = uv - \int {v} \, du

  • [IBP] LIPET: Logs, inverses, Polynomials, Exponentials, Trig

Explanation:

Step 1: Define

Identify


\displaystyle \int {(4x - 12)e^(-8x)} \, dx

Step 2: Integrate Pt. 1

  1. [Integrand] Rewrite [Factor]:
    \displaystyle \int {(4x - 12)e^(-8x)} \, dx = \int {4(x - 3)e^(-8x)} \, dx
  2. [Integral] Rewrite [Integration Property - Multiplied Constant]:
    \displaystyle \int {(4x - 12)e^(-8x)} \, dx = 4 \int {(x - 3)e^(-8x)} \, dx

Step 3: Integrate Pt. 2

Identify variables for integration by parts using LIPET.

  1. Set u:
    \displaystyle u = x - 3
  2. [u] Basic Power Rule [Derivative Property - Addition/Subtraction]:
    \displaystyle du = dx
  3. Set dv:
    \displaystyle dv = e^(-8x) \ dx
  4. [dv] Exponential Integration [U-Substitution]:
    \displaystyle v = (-e^(-8x))/(8)

Step 4: Integrate Pt. 3

  1. [Integral] Integration by Parts:
    \displaystyle \int {(4x - 12)e^(-8x)} \, dx = 4 \bigg( (-(x - 3)e^(-8x))/(8) - \int {(-e^(-8x))/(8)} \, dx \bigg)
  2. [Integral] Rewrite [Integration Property - Multiplied Constant]:
    \displaystyle \int {(4x - 12)e^(-8x)} \, dx = 4 \bigg( (-(x - 3)e^(-8x))/(8) + (1)/(8) \int {e^(-8x)} \, dx \bigg)
  3. Factor:
    \displaystyle \int {(4x - 12)e^(-8x)} \, dx = (1)/(2) \bigg( -(x - 3)e^(-8x) + \int {e^(-8x)} \, dx \bigg)

Step 5: Integrate Pt. 4

Identify variables for u-substitution.

  1. Set u:
    \displaystyle u = -8x
  2. [u] Basic Power Rule [Derivative Rule - Multiplied Constant]:
    \displaystyle du = -8 \ dx

Step 6: Integrate Pt. 5

  1. [Integral] Rewrite [Integration Property - Multiplied Constant]:
    \displaystyle \int {(4x - 12)e^(-8x)} \, dx = (1)/(2) \bigg( -(x - 3)e^(-8x) - (1)/(8) \int {-8e^(-8x)} \, dx \bigg)
  2. [Integral] U-Substitution:
    \displaystyle \int {(4x - 12)e^(-8x)} \, dx = (1)/(2) \bigg( (x - 3)e^(-8x) - (1)/(8) \int {e^u} \, dx \bigg)
  3. [Integral] Exponential Integration:
    \displaystyle \int {(4x - 12)e^(-8x)} \, dx = (1)/(2) \bigg( (x - 3)e^(-8x) - (e^u)/(8) \bigg) + C
  4. [u] Back-Substitute:
    \displaystyle \int {(4x - 12)e^(-8x)} \, dx = (1)/(2) \bigg( (x - 3)e^(-8x) - (e^(-8x))/(8) \bigg) + C
  5. Factor:
    \displaystyle \int {(4x - 12)e^(-8x)} \, dx = (e^(-8x))/(2) \bigg( -(x - 3) - (1)/(8) \bigg) + C
  6. Simplify:
    \displaystyle \int {(4x - 12)e^(-8x)} \, dx = (e^(-8x))/(2) \bigg( (23)/(8) - x \bigg) + C

Topic: AP Calculus AB/BC (Calculus I/I + II)

Unit: Integration

User Rolintocour
by
4.4k points