162k views
4 votes
Calculate the given quantity if

a=[1,1,-2]
b=[3,-2,1]
c=[0,1,-5]
(a) 2a + 3b
(b) |b|
(c) a.b
(d) compab
(e) projab
(f) The angle between a and b (correct to the nearest degree)

User Catherine
by
4.6k points

1 Answer

3 votes

Answer:

a.
2a+3b=(11,-4,-1)\\

b.
|b|=√(14).

c.
a.b=-1

d.
comp_(a)b=(-1)/(√(6))

e.
proj_(a)b= (-1)/(6)[1,1-2]\\

f.
alpha=96^(0)

Explanation:

The vector representation of A,B,C is written as

a=[1,1,-2]

b=[3,-2,1]

c=[0,1,-5].

a.To determine the scalar product of 2a+3b we have


2a+3b=2(1,1,-2)+3(3,-2,1)\\2a+3b=(2,2,-4)+(9,-6,3)\\

we add component by component w arrive at


2a+3b=(11,-4,-1)\\

b. we determine the magnitude of vector b i.e |b|. since b=[3,-2,1]


|b|=\sqrt{3^(2)+(-2)^(2) +1^(2)} \\|b|=√(9+4+1)\\ |b|=√(14).

c.a.b is the dot product of vector a and vector b.


a.b=[1,1,-2].[3,-2,1]\\a.b=(1*3)+(1*-2)+(-2*1)\\a.b=3-2-2\\a.b=-1

d. to find the component of b on a we use the expression


comp_(a)b=(b.a)/(|a|)

where
|a|=\sqrt{1^(2)+1^(2)+(-2)^(2)+ } \\|a|=√(6) \\

Hence if we substitute values we have


comp_(a)b=([3,-2,1].[1,1,-2])/(√(6))

but earlier a.b=b.a=-1


comp_(a)b=(-1)/(√(6))

e. to find the projection of b on a we have the expression


proj_(a)b= (a.b)/(|a|^(2))a \\

If we substitute values we arrive at


proj_(a)b= ([3,-2,1].[1,1,-2])/(|a|^(2))a \\

also recall that earlier we calculated a.b=b.a=-1 and


|a|=√(6) \\

Hence
proj_(a)b= (-1)/(√(6)^(2))[1,1-2] \\

Hence
proj_(a)b= (-1)/(6)[1,1-2] \\

f. to determine the angle between vector "a" and "b" we use


a.b=|a||b|cos\alpha

where ∝ is the required angle . If we substitute values into the expression we arrive at


-1=√(14*6)cos\alpha\\\alpha =cos^(-1)(-1/√(84))\\\alpha=96^(0)

User Natty
by
3.7k points