Answer:
Integral doesn't converge
Explanation:
In order to computed the improper integral replace infinite limit with a finite value:
![\lim_k \to -\infty} (\int\limits^0_k {(x)/(x^2+3) } \, dx )](https://img.qammunity.org/2021/formulas/mathematics/college/9mrdbrwzkbcjvnxkwlixdrpy9bg9qb2tr3.png)
For the integrand
substitute:
![u=x^2+3\\du=2xdx](https://img.qammunity.org/2021/formulas/mathematics/college/j2qlmemwk8mf3fqazyiostvjeni63zqjqi.png)
![\lim_k \to -\infty} ((1)/(2) \int\limits^0_k {(1)/(u) } \, du )](https://img.qammunity.org/2021/formulas/mathematics/college/ugy1cb6z0qlfvo9chsexljoab34dan2iwv.png)
The integral of 1/u is log(u):
Applying the fundamental theorem of calculus and substituing back for u=x^2 +3:
![\lim_(k \to -\infty) ((1)/(2) log(x^2+3) \left \{ {{0} \atop {k}} \right )](https://img.qammunity.org/2021/formulas/mathematics/college/ej251i0aocy0ya0sepr5kbp30s8k9byv05.png)
Evaluating the limits:
![\lim_(k \to -\infty) ((1)/(2) log(x^2+3) \left \{ {{0} \atop {k}} \right ) =0.549-\infty= \infty](https://img.qammunity.org/2021/formulas/mathematics/college/4z98q2nxlerab8dch9o8u0uugp060zwmwo.png)
Hence, the integral doesn't converge