a) The sphere has radius equal to the distance between the center and the given point:
![√((6+1)^2+(-2-2)^2+(3-1)^2)=√(69)](https://img.qammunity.org/2021/formulas/mathematics/college/rkowtgmexx6k9094bp4h5zm3p7fm2an65d.png)
So the sphere has equation
![(x-6)^2+(y+2)^2+(z-3)^2=69](https://img.qammunity.org/2021/formulas/mathematics/college/lgmvqyew24rvkhcpej4buudicbe638t81j.png)
b) The sphere intersects the
-
plane whenever
:
![(-6)^2+(y+2)^2+(z-3)^2=69\implies(y+2)^2+(z-3)^2=33](https://img.qammunity.org/2021/formulas/mathematics/college/mn7uydyz991l7pchu036cljixe8ld9va12.png)
which is the equation of the circle centered at (-2, 3) with radius
.
c) Complete the squares:
![x^2+y^2+z^2-8x+2y+6z+1=0](https://img.qammunity.org/2021/formulas/mathematics/college/in9wu74o047yd265qlrx5r3uwh75l39hpe.png)
![(x^2-8x+16)+(y^2+2y+1)+(z^2+6z+9)+1=16+1+9](https://img.qammunity.org/2021/formulas/mathematics/college/uf5p179jxn71rglm4flha2czd0414a9x77.png)
![(x-4)^2+(y+1)^2+(z+3)^2=25](https://img.qammunity.org/2021/formulas/mathematics/college/oxzlxiz48y8jwmneyxdu7c6ub7s9fj4ld3.png)
So this sphere has radius 5 and is centered at (4, -1, -3).