216k views
0 votes
Find the value of the integral that converges.
∫^-5_-[infinity] x^-2 dx.

User Small Talk
by
4.8k points

1 Answer

5 votes

Answer:


\int_(-\infty)^(-5) x^(-2)dx= (1)/(5) + \lim_(x\to -\infty) (1)/(x) =(1)/(5)

Because the
\lim_(x\to -\infty) (1)/(x) =0

The integral converges to
(1)/(5)

Explanation:

For this case we want to find the following integral:


\int_(-\infty)^(-5) x^(-2)dx

And we can solve the integral on this way:


\int_(-\infty)^(-5) x^(-2)dx= (x^(-2+1))/(-2+1) \Big|_(-\infty)^(-5)


\int_(-\infty)^(-5) x^(-2)dx= -(1)/(x) \Big|_(-\infty)^(-5)

And if we evaluate the integral using the fundamental theorem of calculus we got:


\int_(-\infty)^(-5) x^(-2)dx= (1)/(5) + \lim_(x\to -\infty) (1)/(x) =(1)/(5)

Because the
\lim_(x\to -\infty) (1)/(x) =0

The integral converges to
(1)/(5)

User Deepak Lamichhane
by
5.1k points