Answer:
Therefore the value of x is
![x=1\pm√(19)i](https://img.qammunity.org/2021/formulas/mathematics/middle-school/y4g9ju4osow5ynagvai3eixszjjfnse5lr.png)
Explanation:
Given:
which is
![x^(2)-2x+20=0](https://img.qammunity.org/2021/formulas/mathematics/middle-school/wwtac85gru5ra6v9psjuojxvid3evqzkhh.png)
To Find:
x = ? using Quadratic Formula
Solution:
For a Quadratic Equation ax² + bx + c = 0 , Formula Method is given as
![x=\frac{-b\pm\sqrt{b^(2)-4ac}}{2a}](https://img.qammunity.org/2021/formulas/mathematics/middle-school/c700p1bn34by18naevgyfsn1uhjtzr07jy.png)
On Comparing with above we get
![a=1\\b=-2\\c=20](https://img.qammunity.org/2021/formulas/mathematics/middle-school/it63aemsg9aecx36ulfykhs0979c4s7l5g.png)
Substituting a , b , c in Formula method we get
![x=\frac{-(-2)\pm\sqrt{(-2)^(2)-4(1)(20)}}{2* 1}\\\\x=(2\pm√(-76))/(2)\\\\x=(2\pm2√(19)i)/(2)\\Dividing\ by\ 2\ we\ get\\\\x=1 \pm√(19)i](https://img.qammunity.org/2021/formulas/mathematics/middle-school/behgomclw0xny2i2te137jy9qqtttcuapo.png)
Therefore the value of x is
![x=1\pm√(19)i](https://img.qammunity.org/2021/formulas/mathematics/middle-school/y4g9ju4osow5ynagvai3eixszjjfnse5lr.png)