173k views
1 vote
Find the integral, using techniques from this or the previous chapter.
∫(3x+6)e-3x dx.

User Hexatonic
by
7.9k points

1 Answer

1 vote

Answer:

Integration of the expression will be
I=e^(-3x)(1-x)-2e^(-3x)+c

Explanation:

We have given expression
\int (3x+6)e^(-3x)dx


\int (3x+6)e^(-3x)dx=\int (3xe^(-3x)+6e^(-3x))dx

Let
I=I_1+I_2, here
I_1=3xe^(-3x) and
I_2=6e^(-3x)


I_1=\int 3xe^(-3x)

Integrating by part


I_1=3[x\int e^(-3x)-\int e^(-3x)(d)/(dx)x]


I_1=3[x (e^(-3x))/(-3)+(e^(-3x))/(3)]+c


I_1=e^(-3x)(1-x)+c

Now
I_2=\int 6e^(-3x)dx


I_2= 6* (e^(-3x))/(-3)+c


I_2=-2e^(-3x)+c

So integration I will be equal to


I=e^(-3x)(1-x)-2e^(-3x)+c

User Ewolden
by
8.4k points