Answer:
![2(x-2)^{(3)/(2)}+12√(x-2)+C](https://img.qammunity.org/2021/formulas/mathematics/college/dsvd028mpbrbhtvy7d5pi65p09h45noxju.png)
Explanation:
Given:
The expression to integrate is given as:
![\int (3x)/(√(x-2))\ dx](https://img.qammunity.org/2021/formulas/mathematics/college/stjbs7x1pzhr572x77cow0i3x07ktphgbn.png)
Now, in order to integrate it, we apply the method of substitution.
Let
![x-2=t^2](https://img.qammunity.org/2021/formulas/mathematics/college/2viv3yqpbbg2x9oovpj5tt9rms80gielws.png)
![x=t^2+2](https://img.qammunity.org/2021/formulas/mathematics/college/3719ju5w9b8vvk7bzryw6bbi65ds53mp53.png)
Differentiating with respect to 't' on both sides, we get:
![(dx)/(dt)=2t+0\\(dx)/(dt)=2t\\dx=2tdt](https://img.qammunity.org/2021/formulas/mathematics/college/u9gxzzar1b9uu025v64t6zdq2us90v6wxo.png)
Replace
by
,
and
by
. This gives,
![\int (3(t^2+2))/(√(t^2))\ 2tdt\\\\6\int ((t^2+2)t)/(t)\ dt\\\\6\int (t^2+2)\ dt\\\\6[(t^3)/(3)+2t]+C\\\\2t^3+12t+C](https://img.qammunity.org/2021/formulas/mathematics/college/7cruinan4p6du2szl60lwbdjaynib4ou06.png)
Replacing 't' by
, we get:
![=2(x-2)√(x-2)+12√(x-2)+C](https://img.qammunity.org/2021/formulas/mathematics/college/f7xv89lyelowkcxoovnkem1e001nqghmmc.png)
![2(x-2)^{(3)/(2)}+12√(x-2)+C](https://img.qammunity.org/2021/formulas/mathematics/college/dsvd028mpbrbhtvy7d5pi65p09h45noxju.png)
Therefore, the integral is:
![\int (3x)/(√(x-2))\ dx=2(x-2)^{(3)/(2)}+12√(x-2)+C](https://img.qammunity.org/2021/formulas/mathematics/college/amq73vtu58vzuibb2oogqyay1733px6h2k.png)
Where 'C' is the constant of integration.