Answer:
True
General Formulas and Concepts:
Calculus
Differentiation
- Derivatives
- Derivative Notation
Basic Power Rule:
- f(x) = cxⁿ
- f’(x) = c·nxⁿ⁻¹
Integration
Integration Rule [Fundamental Theorem of Calculus 1]:
![\displaystyle \int\limits^b_a {f(x)} \, dx = F(b) - F(a)](https://img.qammunity.org/2021/formulas/mathematics/college/je9vx4nu9fprre5oszklxfozykmiyr5l2m.png)
Integration Property [Multiplied Constant]:
![\displaystyle \int {cf(x)} \, dx = c \int {f(x)} \, dx](https://img.qammunity.org/2021/formulas/mathematics/college/kyhrzhajthfkoabkn5u9i412baa68ie7zm.png)
U-Substitution
Integration by Parts:
![\displaystyle \int {u} \, dv = uv - \int {v} \, du](https://img.qammunity.org/2021/formulas/mathematics/college/babomk9eltny0rfoifpt2pbc8iqonzv2j3.png)
- [IBP] LIPET: Logs, inverses, Polynomials, Exponentials, Trig
Explanation:
Step 1: Define
Identify
![\displaystyle \int\limits^1_0 {xe^(10x)} \, dx](https://img.qammunity.org/2021/formulas/mathematics/college/vef9yvshpm8gkbmsii4qrvnifavkd8vyf2.png)
Step 2: Integrate Pt. 1
Identify variables for integration by parts using LIPET.
- Set u:
![\displaystyle u = x](https://img.qammunity.org/2021/formulas/mathematics/college/kwt4wazg9hac2xrpc1474px04no66jaxhb.png)
- [u] Basic Power Rule:
![\displaystyle du = dx](https://img.qammunity.org/2021/formulas/mathematics/college/gmxgfw80hw9mgrchypwdjrxlflzdlw94ze.png)
- Set dv:
![\displaystyle dv = e^(10x) \ dx](https://img.qammunity.org/2021/formulas/mathematics/college/5waazk4viu9i61faugwy2402wb6agtxk73.png)
- [dv] Exponential Integration [U-Substitution]:
![\displaystyle v = (e^(10x))/(10)](https://img.qammunity.org/2021/formulas/mathematics/college/x4ilzx1qkbha2wwjo17crt79f1dvci152q.png)
Step 3: integrate Pt. 2
- [Integral] Integration by Parts:
![\displaystyle \int\limits^1_0 {xe^(10x)} \, dx = (xe^(10x))/(10) \bigg| \limits^1_0 - \int\limits^1_0 {(e^(10x))/(10)} \, dx](https://img.qammunity.org/2021/formulas/mathematics/college/uzwgqii2kzrwgtx46vhyy9ndqloxwvdn5n.png)
- [Integral] Rewrite [Integration Property - Multiplied Constant]:
![\displaystyle \int\limits^1_0 {xe^(10x)} \, dx = (xe^(10x))/(10) \bigg| \limits^1_0 - (1)/(10) \int\limits^1_0 {e^(10x)} \, dx](https://img.qammunity.org/2021/formulas/mathematics/college/nohkv49k3s97qhwlw08ipcy7tsgqxai1zi.png)
- [Integral] Exponential Integration:
![\displaystyle \int\limits^1_0 {xe^(10x)} \, dx = (xe^(10x))/(10) \bigg| \limits^1_0 - (1)/(10) \bigg( (e^(10x))/(10) \bigg) \bigg| \limits^1_0](https://img.qammunity.org/2021/formulas/mathematics/college/uf7cwhsf94ibftfbqe8axr6ansz7bsiocq.png)
- Evaluate [Integration Rule - Fundamental Theorem of Calculus 1]:
![\displaystyle \int\limits^1_0 {xe^(10x)} \, dx = (9e^(10))/(100) + (1)/(10)](https://img.qammunity.org/2021/formulas/mathematics/college/l0izcxtpuvr9hi6eg790hwppxrv6vo9c4q.png)
- Simplify:
![\displaystyle \int\limits^1_0 {xe^(10x)} \, dx = (9e^(10) + 1)/(100)](https://img.qammunity.org/2021/formulas/mathematics/college/nagmnthf3yfxx5hexn5d9velmnmrl790hf.png)
Topic: AP Calculus AB/BC (Calculus I/I + II)
Unit: Integration