87.0k views
2 votes
Determine whether the statement is true or false, and explain why.

Integration by parts should be used to evaluate ∫^1_0 xe^10x dx.

User Flashdisk
by
5.8k points

2 Answers

5 votes

Answer:

True

Explanation:

The integral


\int\limits^1_0 {xe^(10x)} \, dx

in the integral we have a product of a monomial:
x

and an exponential function:
e^(10x)

In general case, when we have a combination of these two things you can use the integration by parts, where
x will be
u and
e^(10x) will be
dv.

The statement is true

User Arg Geo
by
5.4k points
6 votes

Answer:

True

General Formulas and Concepts:

Calculus

Differentiation

  • Derivatives
  • Derivative Notation

Basic Power Rule:

  1. f(x) = cxⁿ
  2. f’(x) = c·nxⁿ⁻¹

Integration

  • Integrals

Integration Rule [Fundamental Theorem of Calculus 1]:
\displaystyle \int\limits^b_a {f(x)} \, dx = F(b) - F(a)

Integration Property [Multiplied Constant]:
\displaystyle \int {cf(x)} \, dx = c \int {f(x)} \, dx

U-Substitution

Integration by Parts:
\displaystyle \int {u} \, dv = uv - \int {v} \, du

  • [IBP] LIPET: Logs, inverses, Polynomials, Exponentials, Trig

Explanation:

Step 1: Define

Identify


\displaystyle \int\limits^1_0 {xe^(10x)} \, dx

Step 2: Integrate Pt. 1

Identify variables for integration by parts using LIPET.

  1. Set u:
    \displaystyle u = x
  2. [u] Basic Power Rule:
    \displaystyle du = dx
  3. Set dv:
    \displaystyle dv = e^(10x) \ dx
  4. [dv] Exponential Integration [U-Substitution]:
    \displaystyle v = (e^(10x))/(10)

Step 3: integrate Pt. 2

  1. [Integral] Integration by Parts:
    \displaystyle \int\limits^1_0 {xe^(10x)} \, dx = (xe^(10x))/(10) \bigg| \limits^1_0 - \int\limits^1_0 {(e^(10x))/(10)} \, dx
  2. [Integral] Rewrite [Integration Property - Multiplied Constant]:
    \displaystyle \int\limits^1_0 {xe^(10x)} \, dx = (xe^(10x))/(10) \bigg| \limits^1_0 - (1)/(10) \int\limits^1_0 {e^(10x)} \, dx
  3. [Integral] Exponential Integration:
    \displaystyle \int\limits^1_0 {xe^(10x)} \, dx = (xe^(10x))/(10) \bigg| \limits^1_0 - (1)/(10) \bigg( (e^(10x))/(10) \bigg) \bigg| \limits^1_0
  4. Evaluate [Integration Rule - Fundamental Theorem of Calculus 1]:
    \displaystyle \int\limits^1_0 {xe^(10x)} \, dx = (9e^(10))/(100) + (1)/(10)
  5. Simplify:
    \displaystyle \int\limits^1_0 {xe^(10x)} \, dx = (9e^(10) + 1)/(100)

Topic: AP Calculus AB/BC (Calculus I/I + II)

Unit: Integration

User Oliver Moran
by
6.2k points