144k views
3 votes
Find the value of x in each case. Give reasons to justify your solutions! N ∈ KO

Find the value of x in each case. Give reasons to justify your solutions! N ∈ KO-example-1
User LazyTarget
by
4.6k points

2 Answers

5 votes

Answer:

x = 30 degrees

Explanation:

;)

User Kashif Siddiqui
by
4.9k points
0 votes

x =30°

Explanation:

Step 1: To find
\angle \mathrm{KNL}.

Given N ∈ KO, where KO is a line.

Sum of the adjacent angles in a straight line is 180°.


\Rightarrow \angle \mathrm{KNL}+\angle \mathrm{LNM}+\angle \mathrm{MNO}=180^(\circ)


\Rightarrow \angle \mathrm{KNL}+45^(\circ)+105^(\circ)=180^(\circ)


\Rightarrow \angle \mathrm{KNL}+150^(\circ)=180^(\circ)


\Rightarrow \angle \mathrm{KNL}=180^(\circ)-150^(\circ)


\Rightarrow \angle \mathrm{KNL}=30^(\circ)

Step 2: To find
\angle \mathrm{NLK}.

Sum of the adjacent angles in a straight line is 180°.

Given
\angle \mathrm{NLM}=90^(\circ)


\Rightarrow \angle \mathrm{NLM}+\angle \mathrm{NLK}=180^(\circ)


\Rightarrow \angle \mathrm{NLK}=180^(\circ)-90^(\circ)


\Rightarrow \angle \mathrm{NLK}=90^(\circ)

Step 3: To find x.

Sum of the interior angles in a triangle is 180°.

Let us take the triangle NLK.


\Rightarrow \angle \mathrm{KNL}+\angle \mathrm{NLK}+\angle \mathrm{LKN}=180^(\circ)

⇒ 30° + 90° + 2x = 180°

⇒ 2x = 180° – 30° – 90°

⇒ 2x = 60°

x = 30°

Hence, x = 30°.

User Isanka Thalagala
by
4.9k points