84.0k views
1 vote
Which of these choices show a pair if equivelent expressions? Chack all that apply

A. (^3√125)^9 and 125^9/3
B. 12^2/7 and (√12)^7
C. 4^1/5 and (√4)^5
D. 8^9/2 and (√8)^9

User Panjeh
by
3.5k points

1 Answer

0 votes

Answer:

A.
(\sqrt[3]{125})^9\ and\ (125)^{(9)/(3)}

D.
8^{(9)/(2)}\ and\ (√(8))^9

Explanation:

Equivalent expressions are those expressions that simplify to same form.

Now, let us check each of the given options.

Option A:


(\sqrt[3]{125})^9\ and\ (125)^{(9)/(3)}

We know that,


\sqrt[n]{x} =x^{(1)/(n)}

Therefore,
\sqrt[3]{125} =(125)^{(1)/(3)}

Thus the first expression becomes;


((125)^{(1)/(3)})^9

Now, using law of indices
(a^m)^n=a^(m* n), we get


((125)^{(1)/(3)})^9=((125))^{(1)/(3)* 9}=((125))^{(9)/(3)

Therefore,
(\sqrt[3]{125})^9\ and\ (125)^{(9)/(3)} are equivalent.

Option B:


12^{(2)/(7)}\ and\ (√(12))^7

Consider the second expression
(√(12))^7

We know that,


\sqrt x=x^{(1)/(2)}


(√(12))^7=((12)^{(1)/(2)})^7=(12)^{(1)/(2)* 7}=(12)^{(7)/(2)}

Therefore,
12^{(2)/(7)} \\e (12)^{(7)/(2)}. Hence, the expressions
12^{(2)/(7)}\ and\ (√(12))^7 are not equivalent.

Option C:


4^{(1)/(5)}\ and\ (\sqrt 4)^5

We know that,


x^{(1)/(n)}=\sqrt[n]{x}

Therefore,
4^{(1)/(5)}=\sqrt[5]{4}

Now,
\sqrt[5]{4}\\e (\sqrt 4)^5

Therefore, the expressions
4^{(1)/(5)}\ and\ (\sqrt 4)^5 are not equivalent.

Option D:


8^{(9)/(2) }\ and\ (\sqrt 8)^9

Using law of indices
a^(m* n)=(a^m)^n, we get


8^{(9)/(2) }=(8^{(1)/(2)})^9

Now, we know that,
x^{(1)/(2)}=\sqrt x

So,
(8^{(1)/(2)})^9=(\sqrt8)^9

Therefore,
8^{(9)/(2) }\ and\ (\sqrt 8)^9 are equivalent.

User Brent
by
3.3k points