Answer:
A.
![(\sqrt[3]{125})^9\ and\ (125)^{(9)/(3)}](https://img.qammunity.org/2021/formulas/mathematics/middle-school/j3dylzy8x6osc8nqwkax8be4lw59pu2scm.png)
D.
![8^{(9)/(2)}\ and\ (√(8))^9](https://img.qammunity.org/2021/formulas/mathematics/middle-school/a55wfadgfv6024c6758ki3p14buhsorqpa.png)
Explanation:
Equivalent expressions are those expressions that simplify to same form.
Now, let us check each of the given options.
Option A:
![(\sqrt[3]{125})^9\ and\ (125)^{(9)/(3)}](https://img.qammunity.org/2021/formulas/mathematics/middle-school/j3dylzy8x6osc8nqwkax8be4lw59pu2scm.png)
We know that,
![\sqrt[n]{x} =x^{(1)/(n)}](https://img.qammunity.org/2021/formulas/mathematics/middle-school/jm768bjepgtuz2fktj03nc6o37fb41iqjk.png)
Therefore,
![\sqrt[3]{125} =(125)^{(1)/(3)}](https://img.qammunity.org/2021/formulas/mathematics/middle-school/a25no0ns0ldb9hdul5cuhig7odg6z4gtmj.png)
Thus the first expression becomes;
![((125)^{(1)/(3)})^9](https://img.qammunity.org/2021/formulas/mathematics/middle-school/rf5l8uv3dqer7nd6edp7v6xm3icer6zm0s.png)
Now, using law of indices
, we get
![((125)^{(1)/(3)})^9=((125))^{(1)/(3)* 9}=((125))^{(9)/(3)](https://img.qammunity.org/2021/formulas/mathematics/middle-school/83bs2he3obgejt0yj5gnvif6ecdmhwol3o.png)
Therefore,
are equivalent.
Option B:
![12^{(2)/(7)}\ and\ (√(12))^7](https://img.qammunity.org/2021/formulas/mathematics/middle-school/n9b2xtyzpbsxhw1mrw4je292zyin0c9rw3.png)
Consider the second expression
![(√(12))^7](https://img.qammunity.org/2021/formulas/mathematics/middle-school/getlfjs6f1iwnjrerwr850rz0n8yrrf5pe.png)
We know that,
![\sqrt x=x^{(1)/(2)}](https://img.qammunity.org/2021/formulas/mathematics/middle-school/hwmnk1yl6q3kqv7t42n796gl37wvcmt7r8.png)
![(√(12))^7=((12)^{(1)/(2)})^7=(12)^{(1)/(2)* 7}=(12)^{(7)/(2)}](https://img.qammunity.org/2021/formulas/mathematics/middle-school/yt6pbnuyzt2ortu49gf6ffnc76tic36kgd.png)
Therefore,
. Hence, the expressions
are not equivalent.
Option C:
![4^{(1)/(5)}\ and\ (\sqrt 4)^5](https://img.qammunity.org/2021/formulas/mathematics/middle-school/pzeobg9hagk3w14qszk9taz1ytawr6j15u.png)
We know that,
![x^{(1)/(n)}=\sqrt[n]{x}](https://img.qammunity.org/2021/formulas/mathematics/middle-school/clzwcozuiwrkxsajfflesk9vs3dd3et8q4.png)
Therefore,
![4^{(1)/(5)}=\sqrt[5]{4}](https://img.qammunity.org/2021/formulas/mathematics/middle-school/9n7mrqgnhc29iwavs4f1ut3msur7hqqm9o.png)
Now,
![\sqrt[5]{4}\\e (\sqrt 4)^5](https://img.qammunity.org/2021/formulas/mathematics/middle-school/5nasb9uprygj6z7wfjirk0a9tqy4n1xmg0.png)
Therefore, the expressions
are not equivalent.
Option D:
![8^{(9)/(2) }\ and\ (\sqrt 8)^9](https://img.qammunity.org/2021/formulas/mathematics/middle-school/dfthqnodbmss18lqywrpfyu9somq7y0jbf.png)
Using law of indices
, we get
![8^{(9)/(2) }=(8^{(1)/(2)})^9](https://img.qammunity.org/2021/formulas/mathematics/middle-school/r03qjb5qjqj199zh53gd3muqpesf8174a2.png)
Now, we know that,
![x^{(1)/(2)}=\sqrt x](https://img.qammunity.org/2021/formulas/mathematics/middle-school/zk98jyu6ftzjjpiw4sojk45aoxbb5i1h1k.png)
So,
![(8^{(1)/(2)})^9=(\sqrt8)^9](https://img.qammunity.org/2021/formulas/mathematics/middle-school/l07kbmn6vo0fdb1ilkfgloja1bvxjwi98o.png)
Therefore,
are equivalent.